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FOREWORD

The concept of Lower Limit of Detection (LLD) is used routinmely in the NRC

Radiological Effluent Technical Specifications (RETS) for measurement of radio-

logical effluent concentrations within a nuclear power plant and of radiological

environmental samples outside of the plant. The definition of LLD is subject

to different interpretations by various groups. Consequently, difficulties arose

when the NRC attempted to apply uniformly requirements on licensees. At

" present, NRC relies on documentation on LLDs that has been developed by other
. ; hei Ti ial is f } iFf ]
to obtain, and is only partially relatable to Technical Specifications require-

ments«

There was clearly a need to evaluate the various concepts and interpretations

of LLD presented in the literature and to determine the current use and applica-

tion of these concepts in practice in Technical Specifications for operating

nuclear plants. This would then lead to a NUREG/CR document that could assist

the NRC Nuclear Reactor Regulation staff in defining and elaborating its position

relative to LLDs, as well as providing a technically sound basic doéument on

detection capability for effluent and environmental monitoring.

Dr. Lloyd A. Currie of the National Bureau of Standards, a mationally

recognized expert in statistics, was asked to undertake this task. At the start

Dr. Currie performed am extensive literature search in the area of detection

limits. He discussed concepts and problems of LLD with a number of individuals

from licensed nuclear power plants, from contracting measurement laboratories,
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and from NRC Headquarters and Regional Offices. He then integrated these nuclear-
power oriented questions and concepts into his extensive experience in low-level
measurement to develop a comprehensive document covering the problems of LLD in

radiological effluent and environmental measurements.

It should be emphasized that this document represents Dr. Currie's inter-
pretation of the situations he encountered and his recommendations to the NRC
staff relative to these problems. It cannot of itself represent NRC policy. It
will, however, be used by NRC staff in development of:potential modifications in
the definitions and bases sections of the model RETS relative to LLD. And of
most immediate importance, it will provide a sound basis to licensees and NRC
staff alike for use in clarifying thoughts and writings in the area of detection

capability of radiological measurement systems.

Frank J. Congel, Chief
Radiological Assessment Branch

Charles A. Willis, Leader
Effluent Treatment Section

NRC Division of Systems Integration
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ABSTRACT

A manual is provided to define and illustrate a proposed use of the Lower
Limit of Detection (LLD) for Radiological Effluent and Environmental Measure-
ments. The manual contains a review of information regarding LLD practices
gained from site visits; a review of the literature and a summary of basic
principles underlying the concept of detection in Nuclear and Analytical
Chemistry; a detailed presentation of the application of LLD principles to
a8 range of problem categories (simple counting to multinuclide spectroscopy),
including derivations, equations, and numerical examples; and a brief exami-
nation of related issues such as reference samples, numerical quality control,

and instrumental limitations. An appendix contains a summary of notation

and terminology, a bibliography, and worked-out examples.



EXECUTIVE SUMMARY

This document defines and illustrates a proposed use of the concept of
Lower Limit of De;ection (LLD) for Radiological Effluent and Environmental
Measurements. It contains a review of information regarding LLD practices
gained from nuclear plant site visits, a review of the literature and a
summary of basic principles dnderlying tﬁe concept of detection in Nuclear
and Analytical Chemistry, and a detailed presentation of the application of
LLD principles to a range of problem categories (simple counting to multi-
nuclide spectroscopy), including derivationms, equations, and numerical
examples. It also contains a brief examination of related issue§ such as
reference samples, numerical quality control, and instrumental limitations.
An appendix contains a summary of notation and terminology, a bibliography,

and worked-out examples.

The detection capability of any measurement process (MP) is one of

its most important performance characteristics. When one is concerned with
pressing an MP to its lower limit or with designing an MP to meet an extreme
measurement requirement, an objective measure of this capability is just as -
important for characterizing the MP as is the more commonly understood
characteristics ''precision' and "accuracy." As with these other characterisgics,
the detection capability cannot be specified quantitatively unless the MP is
rigorously defined and in a state of control. In the monitoring environment,

for low levels of effluent and environmental radioactivity associated with

the operation of- nuclear power reactors, MPs must F- capable of detecting the
relevant radionuclides at levels well below those of concern to the public

health and safety.
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Much confusion surrounds the nomenclature, formulation, and assumptions
associated with this important measurement process characteristic. For the
purposes of this document the term "Lower Limit of Detection” (LLD) is used
to describe the MP characteristic, and the same terminology, with appropriate
adjustments for scale and dimensions is applied to amounts of radiocactivity,
concentfations, release rates, etc. In short, the same notatiom, LLD, is used
as a universal descriptor for all of the MPs in question. The assumptions
and mathematical and numerical formulations underlying LLDs are treated
explicitly, and the practical usage (and limitations thereof) is illustrated
with appropriate numerical examples. In particular, the special opportunities

and pitfalls associated with "Poisson counting statistics" are duly noted.

Section I of the report provides an introduction that sets the stage for
the technical sections that follow. Considerations that enter into an NRC
Technical Position on LLD are recorded, including theoretical background,
technical issues, policy issues, and implementation and documentation. High-
lights from site visits are next presented, providing perspective on the
problems and actual practices regarding LLD from the viewpoints of: the NRC
(regional offices and inspectors), a trade association, nuciear utility labo-

ratories, the EPA cross-check laboratory, and contracting laboratories.

The primary historical and theoretical background on detection decisions
and detection limits is presented in Section II. The lack of and need for
uniform practice, which was ascertained during the site visits, is underlined

in the historical review of the literature. The basis for the approach'to
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LLD adopted here, hypothesis testing, is outlined in some detail. This is s
followed by an examination of several crucial issues of general concern such
as the role of detection decisions, the meaning of a priori in the case of
interference; the treatment of systematic error, and the calibration func~
tion. The basic concepts are next applied to radiocactivity, and to specific
issues related to the blank, counting teéhnique, measurement process design

(to meet the requisite LLD), quality in communication and monitoring (control),

and the increase required in LLD to meet the demands of multiple detection

decisions.

Section III builds on the theory developed in Section II. Basic and
simplified formulations are presented in "stand-alone" form, with sufficient
notes, that they might be adapted for use in Radiological Efluent Technical
Specifications (RETS). The heart of Section III comprises detailed algebraic
reductions of the general equations for a variety of radioactivity measure-
ment situations, ranging from "simple counting" to multicomponent spectroscopy.
The treatment of extreme low-level counting is illustrated, as well as ordinary

Poisson error treatment and systematic error treatment in relation to the LLD.

The Appendix includes a condensed summary of notation, an index to the
tutorial notes in Section III, a more extended literature survey and biblio-

graphy, and worked-out numerical examples.
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I. INTRODUCTION

A. Introductory Remark]!

The detection capability of any measurement process (MP) is one of its
most important performance characteristics. When one is concerned with
pressing an MP to its lower limit or with designing an MP to meet an extreme
measuremént requirement, an objective measure of this capability is just as
important for characterizing the MP as is the more commonly understood
characteristics "precision" and "accuracy." As with these other characteris-
tics, the detection capability cannot be specified quantitatively unleés the
MP is rigorously defined and in a stéte of control. (Thus, a secondary iésue
of major importance is the quality control of the measurement procedure.) In
the monitoring environment -- in the present case, for low levels of effluent
and environmental radioactivity associated with the operation of nucleaf_
power reactors =-- MPs must be capable of detecting the relevant
radionuclides at levels Qell below those of concern to the public health and
safety. (This need may be contrasted with others where, for example,
adequate detection capability may be required to monitor biological condi-
tions, natural hazards, industrial processes and materials properties,
international agreements, etc.)

Much confusion surrounds the nomenclature, formulation, and assumptions
associated with this important measurement process characteristic. For the
purposes of this document, we shall somewhat arbitrarily select the term
"Lower Limit of Detection” (LLD) to describe the MP characteristic, and we
shall apply the same terminology, with appropriate adjustments for scale and
dimensions, to amounts of radioactivity, concentrations, release rates, etc.

-= in short, we shall use the same notation, LLD, as a universal descriptor

'In this report reference numbers are placed in parentheses and special
numbered notes (preceded by series letter A or B), in brackets.



for all of the MPs in question, The assumptions and mathematical and
vnumerical'formulations underlying LLD's will be treated explicitly, and thé
practical usage (and limitations thereof) wiil be 1llustrated with
appropriate numerical examples. In particular, the special opportunities and

pitfalls associated with "Poisson counting statistics" will be duly noted.

B. Plan for the Report
| The objective and background for an NRC Technical position (following
section) sets the stage for this report-manual on LLD. Next, perspective.is
given on the problems and actual pééctices from the viewpoints of: the NRC
(regional offices and inspectors), a trade association, nuclear utility
laboratories, the EPA cross-check laboratory, and contracting laboratories.
The primary historical and theoretical background on detection decisions
and detection limits is presented in section II. The lack of and need for
uniform practice, which was ascertained during the site visits, is underlined
'in the historical review of the literature. The basis for the approach to
LLD adopted here, hypothesis testing, is outlined in some detail. This is
followed by an examination of several crucial issues of general concern such
as the rolerf detection decisions, the meaning of a priori in the case of
interference, the treatment of systematic error, and the calibration func-
tion. The basic concepts are next applied to radicactivity, and to specific
issues related to the blank, counting technique, measurement process design
(to meet the requisite LLD), quality in communication and monitoring
(control), and the increase required in LLD to meet the demands of multiple

detection decisions.



Section ITII builds on the theory developed in section II. Basic and

il ied form 3 ONS dre prese = and=airone’ » s W sutf o

notes, that they might be adapted for use in Radiological Effluent Technical

Specifications (RETS). (This led tc scme necessary redundancy with ideas

presented in section II.) The heart of section III comprises detailed

algebraic reductions of the general equations for a variety of radicactivity

measurement situations, ranging from "simple counting”" to multicomponent

spectroscopy. The treatment of extreme low-level counting is illustrated, as

well as ordinary Poisson error treatment and systematic error treatment in

relation to the LLD.

The Appendix includes a condensed summary of notétion, an index to the

tutorial notes in section III, & more extended literature survey and

bibliography, and worked-out numerical examples.

C. Considerations for an NRC Technical Position

1. Objective of the NRC Position

radicactivity are required to assure the safety of the publie, as put forth

in 10 CFR Parts 20 and 50 which mandate appropriate adiclor 5 sffloer 5110

environmental monitoring progréms. In order to assure adequate detection

capability for radionuclides to meet these requirements, the NRC has

established numerical levels for Lower Limits of Detection (LLD) which are

consistent with a sufficient capacity for detecting effluent and environ-

mental radionuclides well below levels of concern for the public health and

safety. For such LLDs to be meaningful and useful, they must (a) be soundly

based in terms of measurement science, and (b) they must be accepted,

understood, and applied in a uniform manner by the community responsible for




performing and evaluating the respective measurements. These limiting values
as LLDs become part of the Operating License of a Nuclear Power Plant through
the Radiological Effluent Technical Specifications (RETS) of the operating

license.

" 2. Theoretical Background

A firm basis for evaluating LLDs is given by the stafistical‘theory of
hypothesis testing, which recognizes that the issue 6f detection involves a
decision ("detected," "not detected") made on the basis of an experimental
observation and an appropriate test statistic. Once the decision algorithm
has been defined, one can evaluate the underlying detection capability (LLD)
of the measurement process under consideration. Arbitrary rules‘for defining
LLD's which do not have a sound base (such as hypothesis testing) yield LLD's
with little meaning and needless incomparability among laboratories. The
system for computing and evaluating LLDs to be recommended for effluent and
environmental radiocactivity measurement processes, is based on exactly the

same principles which underlie more commonly used and understocd confidence

intervals. Key quantities which arise in the approach to LLDs are the
probabilities of false positives (a) and false negatives (8) - both generally

taken to be 5%.

3. Technical Issues

0] The adopted terminology (notation) to reflect the measurement
(detection) capability shall be "LLD," and it shall refer to the intrinsic

detection capability of the entire measurement process - sampling through

data reduction and reporting.
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An LLD for simply one “stage of the measurement process, such as Y-ray
Spectroscopy or B-counting, may in some instances be far smaller than the
overall LLD; as a result, the presumed capability to detect important levels
of (e.g.) environmental contamination may be much too optimistie.

® The LLD shall be defined according to the statistical hypothesis
testing theory, using 5% for both "risks" (errors of the first and second
kind), taking into consideration possible bounds for systematic error. This
means that the detection decision (based on an experimental outcome) and ‘its
comparison with a critical or decision level must be clearly and consciously
distinguished from the detection ligig,'which is an inherent performance
characteristic of the measurement process. (Note that physical non-
negativity implies the use of 1-sided significance tests.)

® Both the critical level and the LLD depend upon the precision of the
measurement process (MP) which must be evaluated with some care at and below
the LLD in order for the critical level and LLD to be réliable quantities.
Information concerning the nature and variability of the blank is crucial in
this regard. (For a=8, and symmetric distribution functions, LLD = twice the
critical level, numerically.)

o} Given the above statistical (random error) bases it is clear that

the overall random error (o) of the MP must be evaluated -- via propagation,

replication, or "scientific Judgment" -- to compute a meaningful LLD.
"Meaningful," as used here, refers to an LLD which in fact reflects the
desired a, B error rates or risks.

o] A great many assumptions must be recognized and satisfied for the
LLD to be meaningful (or valid). These include: knowledge of the error

distribution function(s) (they may not simply be Poisson or Normal); consid-



eration of all sources of random error; reliable estimation of random errors
and appropriate use of Student's-t and careful attention to éources of
systematic error.
o] Systematic error derives Irom non-repeated calibration, incorrect
models or parameters (as in Y-ray spectroscopy), incorrect yields, efficien-

cies, sampling, and "blunders." Bounds for systematic error should always

be estimated and made small compared to the imprecision (o), if possible.

Systematic calibration and estimation error may become a very serious problem
for measurements of "gross" (a,B8) activity where the response depends on the
relative mix of half-lives and particle energies.

o Control of the MP also is essential, and should therefore be
guaranteed by both internal and external "cross-check" programs. External
cross-checks should represent the same type (sample matrix, nuclide mixture)
and level of activity as the "real" effluent and environmental samples
including blanks for the "principal radionuclides", and the cross-checks

should be available "blind" to the measuring laboratory. Note that without

adequate control or without negligible systematic error, LLD loses meaning

in the purely probabilistic sense. The issues of setting bounds for residual

systematic error and bounds for possibly undetected activity under these
circumstances both deserve careful consideration, however,

o} Radionuclide interference (and increased Compton baseline)
necessarily inflates the LLD, and must be taken into consideration quantita-
tively. The use of "a priqri" and "a posteriori”™ to refer to this issue is
strongly discouraged, because of needless confusion thereby introduced

involving another usage of these terms (related to detection decisions and

LLD).



® Reporting practices are crucial to the communication and
understanding of data (as well as the validity of the respective LLD). This
is a special problem for levels at or below the LLD, where sometimes even
negative experimental estimates obtain. Full data reporting is recommended,
from a technical point of view, to alleviate information-loss and the
possibility of introducing bias when periodic averages are required. (Also,

policy on uncertainty estimates and significant figures is in order.)

4. Related Policy Issues

© Once defined and agreed upon, ; uniform approach to LLD, statement
of uncertainty, QA assessment (external), and data reporting should be
established. |

@ Issues involving interfergnce (and LLD relaxation) and reliance only
on Poisson counting statisties (Xi adequate replication and full error propa-
gation) must be settled. Other factors such as branching ratios/Y-abundance
should be considered in setting practically-achievable nuclide LLDs.

® Significant distortions which could arise from: a) "gross" (a,B)
activity measurements, b) sampling systematic errors, and ¢) concealed
software and bad nuclear parameters must be highlighted and controlled.
(Institution of an external 3333 "eross-check" QA program, as the IAEA Y-ray
intercomparison spectra, may be one fruitful approach t; the last problem.)

® Difficulties between scientific Vs public (political) perceptions
connected with "detected” Vs "non-detected" radionuclides especially in

reporting contexts need to be addressed.



o) Means for dealing with situations where the purely statistical
assumptions underlying LLD may not be satisfied must be defined. (That is one
purpose of the present report. See section II for a\catalog of assumption

difficulties.)

Implementation and Documentation
A potential basis for the NRC position for effluent and environmental
radioactivity measurement process LLD's is developed and illustrated in this

technical manual (NUREG/CR document). This document is designed to provide

explicit information on: a) the history and principles of LLD's; b) practices

actually encountered in the field at the time of this study; c¢) simple, clear
yet accurate exposition and numerical illustrations of detection decisioﬁs

and LLD use, as applied to effluent and environmental radioactivity measure-
ments; and d) special technical issues, data, and bibliographic material (in

the Appendix).

D. Highlights from Site Visits

The highlights developed from a series of site visits are presented as a
synthesis of information gained rather than as a report concerning individual
discussions or specific organizations. The information represents my under-
standing from numerous discussions; the more critical issues may need to be
appropriatély verified. Also, it should be understood that the contents in
this section constitute a record of‘my observations, not necessarily an
indication that all parts are directly applicable to the Radiological

.Effluent Technical Specifications (RETS). (e.g., parts 12 and 13).
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Organizations and Individuals Visited (besides NRC-Headquarters)

4 November 1982 Dave Harward, Atomic Industrial Forum, Bethesda, MD

19 November 1982 Dave McCurdy, Yankee Atomic Electric Company,
Framingham, MA, (Environmental Lab)

5 July 1983 Jerry Hamada (Inspector), NRC Region V Office,
Walnut Creek, CA
6 July 1983 Roger Miller, Rancho Seco Power Plant, CA (accompanied
by J. Hamada)
7 July 1983 Rod Melgard, EAL, Inc. (Contracting Lab.), Richmond, CA
11 July 19883 Art Jarvis and Gene Easterly,

EPA - Las Vegas (cross-check program)

12 July 1983 Jim Johnson, Colorado State University, Ft. Collins
(measurements for Ft. St. Vrain plant)

9 August 1983 Mary Birch and Bob Sorber, Duke Power Co., Charlotte, NC

(HQ, and Lab at Oconee site)

21 November 1983 Carl Paperiello, (Marty Schumacher, Steve Rozak,
Al Januska) NRC Region III Office, Glen Ellyn, IL

22 November 1983 Leonid Huebner, Teledyne Isotopes Midwest Lab (formerly
Hazelton), Northbrook, IL

9 February 1984 Tom Jentz, John Campisi, Joan Grover,

Charlie Marcinkiewicz, NUS (Contractor Lab.), Gaithersburg,
MD

1. Neel and approach for the planned LLD manual. With one exception, I

came away from the several meetings with strong support for the aim of
producing a manual. Most of those I visited (especiali& in the West) were
quite anxious to receive a copy of the manual as soon as possible. Valuable
suggestions included requests to treat the basic concepts in a unified and
complete, yet easy-to-grasp manner (e.g., hypothésis testing). One approach
would be *o include mathematics and appropriate reprints in an appendix, but

worked-through examples in the text.



2. Diversity of training and experience. This was evident in speaking

to personnel ranging from lab technicians to lab managers to company offi-
cials. This diversity underlines the approach called for in item 1. (It was
noteworthy that some of the younger and least professionally trained person-
nel raised some of the most penetrating questions about assumptions,
alternative approaches to data presentation and evaluation, etec.)

3. Diversity of terminology, usage, etc. Despite the definition and

references provided by the NRC for LLD (e.g., throughout NUREG-0472), there

exist a number of popular terms (LLD, MDA, MDC, ...) and formulations (2g¢,

S/N, hypothesis testing risks, ...) to the.detection limit, and an even wider

diversity of assumptions recognized (or ignored!) in practice. Some of the
more pertinent practices (re: assumptions) will be noted below.

4, Policy Issues. I found many opportunities to become enmeshed in

policy. Despite my advance letter (and copy of the "manual"™ - work state-
ment), certain of my hosts seemed to believe I could speak to policy - 1i.e.,
what numerical values should be established for LLD's to be met. I explained
that this was not my charge, though in certain special cases -- e.g., the
effects of severe radionuclide interference on detection capabilities =-- it
might be useful to consider the impact of policy on practical operations (see
below).

In certain cases, I was advised that the "process environment" mandated
special approaches to the evaluation and repbrting of data, because of large
sample loads and the need for rapid decisions. Under some circumstances this
could imply (statistically) conserQafively biased reporting of data, and

non-specific radionuclide measurements (e.g., B8~ cbunting of separated iodine

10
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isotopes, and treating the result as though it were all I-131). The issue I
perceive is whether it is appropriate to recommend different LLD and/or
reporting schemes depending on how busy a laboratory is.

5. Detection decisions. I found the full range of criteria: from

decisions based on the critical level (such that a and B risks each equal 5%)
to those based on LLD (such that "false positives" are infinitesimal, but
"false negatives" are 50%!). I have the impression that the depision-making
aspect of detection == i.e., the actual testing of the null hypothesis ~- is
not fully appreciated by all workers.

6. Reporting (when "not detected"). Such results are equated to zero,

some upper limit, LLD, LLD/2, etc. All of those I spoke to recognized that
averaging (E;E;’ over a quarter) of such reported results is either imboss—
ible, or positively or negatively biased. _I sensed some resistance to
reporting the observed value (especially when it is negative), though one
group preserves such information(for unbiased averaging; but then reports the
same data in two different (biased) ways according to the policies mandated
by different uéers of the data! Also, during one visit, I learned that
company (?) policy leads to different ways of reporting "non-detected"
results between environmental and effluent measurements.

7. Radionuclide interference. A significant issue. It is (universally)

recognized that interference increases detection limitsA(all else being
equal). The same example (Ce-144 with very large amounts of Co-58, =60) was
raised during two visitsy but with somewhat different (policy) perspectives,
'In the one, it was suggested that prescribed LLD's be relaxed (or possibly

- remain "pure solution" or interference-free LLD's) when excessive

1



interference is present because the relative contribution of Ce-144 (here) is
trivial by comparison. In the other, caution was suggested, because even a
small amount of Ce-14U4 could be an important indicator for transuranics.

8. Blank, background, baseline. Some ambiguity was noted in the current

proposed NRC definition éor LLD. Also, the question of real background
variability and number oA deérees of freedom (and Student's-t) were raised.
One laboratory always assumes Poisson-background variability, or, if this
seems exceeded, it shuts down until a préblem is identified or expected
behavior resumes.

9. Non-counting errors. Almost universally it was recognized that

actual probabilities of detection (and LLD) depend upon 2ll sources of error,
yet nearly all workers are using Poisson statistics only (for the blank-énd
sample, and ignoring errors for efficiency or chemical yield estimates) to
calculate LLD. Since the Relative Standard Déviation =30% at the detection
limit (a =8 =0.05), this approximation is partly justified. Severe errors,
however, in blank estimates, detection efficiency (3;5;[ for cartridge
filters and for gross—-a deposits), and sampling2 can seriously invalidate
this (Poisson) approximation. Several of the groups are working very hafd to
estimate (and minimize) non-counting error, but there is little movement |
toward considering its (necessary) effects on the LLD.

One interesting suggestion (mutually developed) was to distribute blind
cross-check samples having radionuclide concentrations slightly (g;g;, 50%)
higher than the intended (NRC) LLD's to assess the actual significance of
non-#oisson error on detection capabilities. (This might also include blanks
of "principal radionuclides" to test a-risk performance.)

2Sampling Errors -- e.g., involving soil particles, coolant containing
sediment, single ion exchange beads, -- were in some cases shown to be
overwhelming, reducing all other errors to insignificance.
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10. Modeling rather than direct measurement. Knowing (at least

approximately) relative dilution factors (laboratory, atmosphere, coolant
systems) in many cases allows more accurate inferences tb be drawn from
relatively high level measurements followed by calculation -- as opposed to
direct measurements of the diluted (dispersed) material. (This is followed,

for example, in preparation of the EPA cross—-check samples.)

11. QA and cross-check samples. I found some excellent intralab QA, but
at the same time I found extremely strong support for external cross-check ’
programs ;- especially because of the wide range of (e.g.) contractor or
technician capabilities., The EPA sample.program is valuable (essential,

.Since there is no other) for this purpose, but several useful extensions were
suggested: increased frequency (perhaps suited to QA performance), truiy
"blind" samples (EPA's are clearly recognizable, and often given special
.attention), and samples whicﬁ are closer in composition and level to those
encountered in the various programs (environmental, effluent, waste),
(Splits, especially with mobile laboratories serve effluent QA well, but
availability of "known" samples would be valuable.)

12. "De minimis" reporting. Media other.than air and water are in many

cases not covered by specified LLD's Qidi;' oil, charcoal, ...), so that any
detected activity must be reported. Apparently, the Situation is analogous
to that arising from one interpretation of the Delaney ;ﬁendment, where
non-detection is taken equivalent to absence; so that reporting requirements

(and public perceptions) are strongly affected as measurement techniques

improve.
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13. Uncertainties, reporting levels, litigation. 1In view of measurement

uncertainty, one often meets the question of whether an experimental observa-
tion implies that the true value exceeds or is less than a specified regula-

tory limit. The issue is perhaps compounded when one considers a summation,

n / concentration
z s
i

1 \reporting level

as on page 5 of the NRC Radiological Assessment Branch Technical Position
(November 1979). Both the magnitude of the total errors anq the number of
terms (n) impact this matter. Actions and legal defense can be rather complex
as a result; so cautious attention must bé given to matters of relative
"costs", experienced judgment on the part of inspectors, burden of proof,

etc. |

14, Continuous and continual monitoring; averaging. A difficult area:

varied equipment age or quality can make continuous monitors difficult to
integrate reliably, and errors in estimated time constants and flow rates can
be substantial. Continual monitoring (for period averaging), on the other
hand, must be done with care to avoid missing non-monotonic behavior
(excursions, ...). Random variations may be approximately normal (gaussian)
close to the emission site, but log-normal when mixed in the environmental

- system. Averaging procedures (arithmetic Vs. geometric mean) may differ
accordingly. (Weighted averaging is yet another topiec.)

15. Multiple detection decisions. Basing all decisions on q = 5%

(single observation false positive risk) means that on the average 1 in 20
blanks will be reported as detected.A Adjustment so that, e.g. in a multi-
component Y-ray spectrum, there is only a 5% change of ény false positive,

was a seemingly esoteric matter noted by very few of those I visited.
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Also, not widely appreciated was the too liberal nature of an outlier

rule (Chauvenet's criterion) being sometimes employed.

16. Hidden algorithms, bad parameters. A widespread, but not too widely
appreciated problem is the nature and i;ck of access to computer‘programs
used for Y-ray spectrum evaluation. A number of parameters (g;g;, branching
ratios) both in certain nuclear data compilations and in some "canned"
software routines'are wrong. The absence of adequate software documentation
and the inaccessibility of source code has caused moderate difficulties in
several laboratories -- problems which may be exacerbated for sméll activi-
ties (3 LLD), for high levels of interference (base-line shape,
pile-up, ...), and for multiplets. One interesting test that was described,
revealed software artifacts (algorithm switchihg) whén computer output- was
examined for a series of seduential (known) dilutions of a given radionuclide
sample. (Note the similarity to the classic, Standard Addition Method to

reveal or compensate chemical interference.)

II. BASIC CONCEPTS!

In order to meet the underlying objective of defining LLD for use in
Radiological Effluent Technical Specifications (RETS) it is necessary first
to adopt a uniform and reasonable conceptual approach to the specification of
detection capability for an MP, and it is then necessary to set forth a
carefully-constructed and consistent scheme of nomenclature and mathematical
statistical relations for Specific application to the range of problems
encountered in measurements of effluent and environmental radiocactivity. oOur
goal in this section is to outline the preferred conceptual approach together
with a reasonably complete catalogue of assumptions and means for putting it

Tsee Appendix A for selected nomenclature and terminology.
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| into practice. Detailed reduction of the basic formulas presented in this

section will take place in the next section, for the several common caée-
gories of nuclear and radiochemical measurement; and explicit numerical
examples will be given in the Appendix. Let us begin with a glance at the

past.

A. Overview and Historical Perspective

Some appreciation for the evolution of methods for expressing detection
capability may be gained from Table 1. In this table, which refers‘only to
detection capability (not detection decision levels), we observe that the
development of detection terminology and formulations for Nuclear and
Analytical Chemistry covers an extended period of time and that'it has been
characterized by diverse and non-consistent approaches. (Besides alternative
terms for the same concept, one occasionglly finds the same term applied to
different concepts -- viz., Kaiser's "Nachweisgrenze", which refers to the
test or detection decision level, is commonly translated "detection limit";
yet, in english "detection limit" generally relates to the inherent detection
capability of the Chemical Measurement Process (CMP).) For information
concerning the detailed assumptions and formulations associated with the
terms presented in Table 1 the reader is referred to the original litera-
ture. The principal approaches, however, are represented by: (a) Feigl
-- selecting a—more—or less arbitrary concentration (or amount), based on
expert judgment of the current state of the art; (b) Kaiser and Altshuler
-- grounding detection theory on . principles of hypothesis testing; (c) St.

John -- using signal/noise (assumed "white") and considering only the error
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of the first kind; (d) Nicholson -- considering deteétion from the
perspective of a specific assumed probability distribution (Poisson); (e)
Liteanu =-- treating detection in terms of the directly observed frequency
distribution, and (f) Grinzaid -- applying the weaker, but more robust
approaches of non-parametric statisties to the problem. The widespread
practice of ignoring the error of the second kind is epitomized by Ingle in
his inference that it is too complex for ordinary chemists to use and
comprehend! Treatment of detection in the presence of pcssible systematic

and/or model error is considered briefly in Ref. [33].

Table 1. Historical Perspective -- Detection Limit Terminology
Feigl ('23) - Limit of Identification [Ref. 1]
Altshuler ('63) - Minimum Detectable True Activity [Ref. 4]
Kaiser ('65-'68) - Limit of Guarantee for Purity [Ref. 2]
St. John ('67) - Limiting Detectable Concentration (S/Npps) [Ref. 3]
Currie ('68) - Detection Limit [Ref. 5]
Nicholson ('68) - Detectability [Ref. 36]
IUPAC ('T2) - Sensitivity; Limit of Detection...[Ref. 22, 23]
Ingle ('TL) - ("[too] complex...not common") [Ref. 51]
Lochamy ('76) - Minimum Detectable Activity [Ref. 7]
Grinzaid ('77) - Nonparametric...Detection Limit [Ref. 44)
Liteanu ('80) - Frequentometric Detection [Ref. 31]

A condensed summary of the principal approaches to signal detection is
presented in Table 2. The hypothesis testing approach, which this author
favors, serves also as the basis for thr more familiar construction of
confidence intervals for signals which are detected [83]. For more informa-

tion on the relationship between the power of an hypothesis test and the
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significance levels and number of replicates (for normally-distributed data)
the reader may refer to OC (Operating Characteristic) curves as compiled by
Natrella [84]. There it is seen, for example, that 5 replicates are neces-
sary if one wishes to establish a éetection limit which is no greater than
20, taking [a] and [B] risks at 5% each. (Note the inequality statement;
this arises because of the discrete nature of replication.) Once we leave -
the domain of simple detection of signals, and face the question of analyte

or radioactivity concentration detection, we encounter numerous added

Table 2. Detection Limits: Approaches, Difficulties

Signal/Noise (S/N) [Ref's 3,29,30,86]
Detection Limit = 2Np-p, 2Npps, 3s (n=16-20)
- [Nrms = Np_p/S-]
DC: white noise assumed, B-error ignored

AC: must consider noise power spectrum, non-stationarity,
digitization noise
Simple Hypothesis Testing [Ref's 2,5,26,56,83]

~ ~

S=y -8B

Hg: significance test (a-error) ~ 1-sided confidence interval

Hp: power of test (g-error) ~ Operating Characteristic Curve

Determination of Sp requires accurate knowledge of the distribution
function for §

Ir § ~ N(S, 02), and a, 8=0.05, then Sp = 2S¢ = 3.29 o

Other Approaches [Ref's 28,85,87,88]

Decision Analysis (uniformly best, Bayes, minimax), Information and Fuzzy

set theories. S
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problems or difficulties with assumption validity. That is, assumptions
concerning the calibration function or functions -- i.e., the full gnalytic
model -- and the "propagation" of errors (and distributional characteristics)
become crucial. A catalog of some of theée issues is given in Table 3;
further discussion will be found in the following subsection. Finally, for
more detailed summary of the relevant literature, the readeb is referred to

the review and bibliography in Appendix C.

Table 3. Concentration Detection Limits - Some Problems

02 only estimated; Hy-test ok (ts/vn), but Xp is uncertain

© Calibration function estimated, so normality not exactly preserved:
X = (y-B)/A = linear Fen (observations) o

o] B-distribution (or even magnitude) may not be directly observed

® Effects of non-linear regression; effects of "errors in x-
and y" (calibration)

© Systematic error, blunders -- e.g., in the shape, parametérs of A
[8§ » A, without continual re-calibration] ‘

© Uncertain number of components (and identity)
[Lack'of fit tests lose power under multicollinearity]

® Multiple detection decisions: (1-a)+>(1-a)n

B. Signal Detection (principles)

1. Alternative Approaches

A necessary, first step in treating signal detection is to consider what
magnitude observed (a posteriori) response (gross signal) constitutes a
statistically significant deviation (increment, or net signal) from the
zero-level (blank or background or baseline in radioactivity measurement):

This increment, which really represents a critical or decision level (SC)
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with which the observed signal is compared, is derived from the distribution
function for the noise. If the noise can be considered normal ("Gaussian")
with parameter-g (standard'deviation), Sc is given by a fixed multiplier
times o0, and the detection proceés’becomes simply a significance test based
on comparison of the observed with the critical signal to noise rat;é.
Certain non-trivial problems arise if the noise power spectrum is n%t "white"
(Gaussian) and when the signal is continuous (in time) but is sampléd
periodically. These issues are treated in some depth in References indicated
in Table 2.

The test, however, is incomplete (though widely practiced!) for our
purposes. It speaks only to the question of signal detection (a
posteriori) -- i.e., the detection decision given the noise probability
density functién (pdf) and an observed signal. It is important to us in that
the significance level of the test a is equivalent to the‘false positive
probability or "error of the first kind." (That is, a equals‘the'probability
that one would, by chance, falsely conclude that a blank contained excess
radioactiviﬁy.) This is insufficient, per se, for us to specify the detec-
tion capability or LLD, which is an a priofi'performance characteristic of
the Measurement Process (MP).

A solution is found in the theory of Hypothesis Testing, wherein we use
an experimental outcome § not simply to test for the presence of a éignal but
actually to discriminate between two pdssible states of the system: Hg and
Hp. Hp and Hp are, respectively, the "null hypothesis" and the "altérnative
hypothesis" and the critical level S¢ is set in such a way that an optimal

decision (in the long run) is made between the two hypotheses. As the
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subscripts imply, Ho refers to samples containing no net radiocactivity, and
Hp, to samples céntaining radioactivity at the LLD. 1In terms of the net
signal, Hp: S=0 and Hp: S=Sp (S being the true, but unknown net signal.)

Two of the basic forms of Hypothesis testing require information or
assumptions that are not generally available for simple chemical or physical
measurements. The first involves the use of the "Bayes Criterion" which
requires prior probabilities for Hp and Hp, as well as the assignment of
costs %or making incorrect decisions. In this case S¢c would be set to
minimize the average (long=run) cost. The second approach, which is related
to game theory, does not require prior ‘probabilities. Rather, it is designed
to minimize the maximum cost over the entire set of possible prior probabili-
ties. Appropriately, this is termed the "Minimax" decision strategy.

Lacking either costs or prior probabilities, we prefer to define detection
capability (LLD) on the basis of simple hypothesis testing ("Neyman-Pearson
criterion") which considers Hp, Hp and S¢ simply in terms of the probabili-
ties of drawing false conclusions when § is compared to Sc. Lucid exposi-
tions of all three decision Strategies are given in Ref's 28, 29 and 79. 4.
more complete development of simple hypothesis testing for direct application

to LLD follows.

2. Simple Hypothesis Testing and the LLD

[adapted from Ref. 38]

The basic issue we wish to address is whether one primary hypothesis
(the "null hypothesis", Ho] describes the state of the system at the point
(or time) of sampling or whether the "alternative hypothesis" [Hp] describes
it. The actual test is one of consistency - i.e., given the experimental

sample, are the data consistent with Hp, at the specified level of signifi-



cance, o? That is the first question, and if we draw (unknowingly) the wrong
conclusion, it is called an.error of the first kind. This is equivalent to a
false positive in the case of trace analysis - i.e., although the (unknown)
true analyte signal S equals zero (state HO), the analyst reports,
"detected". \
The second question relates to discrimination. That is, given a

decision- (or critical-) level Sg¢ used'for deciding upon consistency of the
-experimental sampie with Hg, what true signal level Sp can be distinguished
from Sc at a level of significance 8? If the state of the system corresponds
to Hp (S=Sp) and we falsely conclude that it iS in state Hp, that is called
an error of the second kind, and it corresponds in trace analysis to a false
negative. The probabilities of making correct decisions are therefore 1-a
(given Hg) and 1-B (given Hp); 1-B is also known as the "power" of the test,
and it is fixed by 1-a (or Sc) and Sp. One major oﬁjective in selecting a
particular MP is thus to achieve adequate detection power (1-8) at

the signal level of interest (Sp), while minimizing the risk (a) of false
positives. Given a and B (commonly taken to be 5% each), there are clearly
two derived quantities of interest; S¢ for making the detection decision, and
Sp the detecfion limit. (If, for RETS, our -concern were strictly with the
net signal rather than radioactivity concentration, LLD would be taken

equal to Sp.) Figure 1 illustrates the interrelation of «, 8, Se¢ and

the detection limit.

An assumption underlying the above test procedure is that the estimated
net signal S is an independent rangom variable having a known distribution.
(This is identical to the prerequisite for specifying confidence intervals.)
Thus, knowing (or having a statistical estimate for) the standard deviation

of the estimated net signal §, one can calculate S¢ and Sp, given the form of
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Fig. 1. Hypothesis testing;errors of the first and second kinds
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the distribution and a and 8. If the distribution is Normal with constant 0,
and a = 8 = 0.05, Sp = 3.29 og and S¢ = Sp/2. Thus, the relative standard
deviation of the estimated net signal equals 30% at the detection limit (5).
Incidentally, the theory of differential detection follows exactly that of
detection, except that AS;yp (the "just noticeable difference™) takes the
place of Sp, and for Hp reference is made to the base level Sg of the analyte
rather than the zero level (blank). A small fractional change (AS/S)p thus
requires even smaller imprecision.

Obviously, the smallest detection limits obtain for interference-free
measurements and in the absence of systematic error. Allowance for these
factors not only increases Sp, but (at least in the case of systematic error)
distorts the probabilistic setting, just as it does with confidence inter-
vals. Special treatments for these questions and for non-normal distribu-
tions will be given as appropriate. Not so obvious perhaps is the fact that
Sp depends on the specific algorithm selected for data reduction. As with
interference effects on Sp, this dependgnce comes about because of the effect
on,os, the standard deviation of the estimated net signal. More explicit
coverage 6f these matteré will be given below and detailed derivations anq
numerical examples will be found in section III and the Appendix of this
report, respectively, (see also Ref. 33.).

Hypothesis testing is extremely important for other phases of chemical
and radiochemical analysis, in addition to the question of analyte detection
limits. Through the use of appropriate test statistics, one may test data
sets for bias, for unexpected random error components, for outliers, and even
for erroneous evaluation (data reduction) models (33). Because of statisti-
cal limitations of such tests, especially when there are relatively few

degrees of freedom, they are somewhat insensitive (lack power) except for
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quite large effects. For this reason it is worth considerable effort on the

part of the analyst to construct his MP so that it is as free from or

resistant to bias, blunders, and imperfect models as possible.

Figure 2 gives an illustration of the difficulties of detecting béth
systematic error and excess random error. There we see that just to detect
systematic error when it is comparable to the random error (o) requires about
15 observations; and to detect an extra random error component havihg a
comparable ¢ requires 47 observations (89). 1In a simple case involfing model
error it has been shown that analyte components omitted from a least-squares
multicomponent spectrum fitting exercise must be significantly above their
detection limits (given the correct model) before misfit statistics signal
the error (33). This limitation in "statistiecal power" to prevent
significant model error bias, especialy in the fitting of multicomponent
spectra, is one of the most important reasons for developing multidimensional
chemical or instrumental procedures and improved detectors of high

specificity or resolution.

C. General Formulation of LLD - Major Assumptions and Limitations

The foregoing discussion provides the basis for deriving specific

. expressions for the LLD for signals, given a and B, and 6s as a function of
concentration. Before treating concentration detection limits generally, and
radioactivity concentration detection limits specifically, however, it is
necessary to examine a number of basic assumptions connected with the concept

and with the MP.
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1) Detection Decisions vs Detection Limits

The signal detection limit Sp is undefined unless a or S is defined and
applied. That is, detection decisions are mandatory if detection limits (in
the hypothesis testing sense) are to be meaningful. The relatively common
practice of equating these two levels (S¢=Sp) is equivalent to setting the
false negative risk at 50%. That is, a detection limit so defined will in
fact be missed half the time! The recommended practice therefore is to take
a=8=0.05, in which case, '

Sc = Z1-q0p = 1.645 o4 (1

Sp = S¢ + 21-g0g = 2S¢ = 3.290q (2)
provided the standard deviation of the net signal og is known and constant
(at least up to the detection limit) and it is normally-distributed (z refers
to the indicated percentile of the standard normal variate.) In Eq's (1) and
(2), oo = og (at S=0); this in turn equals og if the average value of the
blank is well-known (Ref. 5). (For "paired observations", 0o = 03/51) Sc is
- used for testing whether an observed signal S is (statistically) distinguish-
able from the blank -- i.e. "detected"; Sp ;epresents the corresponding MP
performance characteristic, i.é., the detection limit. Although Sp/Sc = 2
generally, this is not universally tfue. A number of exceptional cases which
do occur, especially in extreme low-level counting and in nuclear

spectroscopy, are treated in section III of this manual.

2) A Priori vs A Posteriori; Changes in the MP (Interference, ...)

Some confusion exists in the usage of these terms which mean "before the
fact™ and "after the fact." The-"fact" referred to is the experimental
outcome -- i.e., the observation of a (random) signal §, associated with the

measurement of a particular sample. The MP, which necessarily includes the
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influence of the sample on the characteristics of the measurement systemris
nof the "fact", from the perspective of hypothesis testing. 1In order to make
intelligent decisions regarding S we need therefore information concerning
the MP characteristics, notably og at S=0 and the variation of og with
concentration. This in turn is influenced by the level and nature of any
interfering species in the sample in question. Also, as soon as we consider
the real quantity of interést, the concentration detection limit (xp), we
require information concefning the overall calibration factor for the
particular sample; this includes the (radio)chemical yield or recovery,
detection efficiency (as perturbed by sample matrix effects: absorption and
scattering), volume or mass of the sample, etc.

Thus prior knowledge concerning the sample in question is required in
order to compute Sc which one needs for the a posteriori test of §; it is
needed also to compute the signal and cohcentration detection limits (Sp,
xp) for that sample. Such prior inférmation may be obtained in a preliminary
or screening experiment; it may be estimated from data resulting from the

experiment, itself; or it may be assumed (not recommended) independent of the

experiment. The last approach might be taken if one were interested in "pure
solution® o; ideal sample detection limits, where there is no interference,
no matrix effects and perfect or unvarying recoveries. A slightly less
disastrous alternative, to assume average values for such quantities or
effects, results in needless information loss. To caricature the situa;ion,
it's equivalent to permitting the counting time to vary in a haphazard
fashion from sample to sample and‘ghessing an average time for calculating
individual counting rates. The point is: the critical (decision) level and

detection limit really do vary with the nature of the sample. So proper
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assessment of these quantities demands relevant information on each sample,
unless the variations among samples (e.g., interference levels) are quite
trivial.

Some perspective and a suggested approach to this matﬁer are given in
Fig. 3. Here, we consider three possible outcomes for an experiment
("experiment-a") which is designed (sample size, expected interferenée level
or background activities, counting time, etc.) according to our prior
knowledge of the MP. This prior "knowledge", which here includes the
assumption of zero interference (I=0), we designate "prior(a)"; it leads to a
concentration detection limit XDO based on a background equivalent activity
Bo. We consider the experiment adequately designed if this estimated
detection limit xp (actual LLD) does not exceed the specified maximum level
Xg (prescribed LLD).

As soon as the (first) experiment is performed, we gain two kinds of
iﬁformation:'new data on the MP-characteristics for the sample at hand, and
an experimental result Qa. The three possible outcomes (MP characteristics)
depicted in Fig. 3 show progressively greater background- (or baseline-)
equivalent activities (B3>82>B1) and therefore similarly increasing detection
limits (xp's). For outcome-1, the posterior MP characteristics ["post(a)r]
are equivalent to our assumed prior MP-characteristics ["prior(a)ﬁ], --1i.e,
By = Bgp -- so of course the detection limit is as calculated (xD1 = xDO) and
the experiment is adequate (xD Y xR). For outcomes-2 and -3 the posterior
characteristics differ from the prior; there is interference (Bp and B3 >
Bo), so the detection limit is greater. Outcome-2 still shows an adequate
detection limit (xD2 < xR), s0 our task is complete --the initial design was

sufficiently conservative (xDO < xg) that some interference could be

tolerated,
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The third set of MP-characteristics (outcome-3) correspond to a sample
having so high a level of interference that the initial design was inadequate
(xD3 > Xg). We therefore must use this posterior information ("post(a)") as
our new prior information ("prior(b)") to re-design the MP to yield adequate
characteristics €x63 £ xgR), in preparation for a second (final) experiment.
(This is still p%operly considered "a priori" in the technical sense of
hypothesis testiné until the second experimental result ib [ﬁfaot" or
observation] has been obtained.) Such re-design can be based on any of the
MP-variables under er control, such as sample size, radiochemical separation
or concentration, or counting time. (In Fig. 3 we indicate re-design simply
as an extension of counting time for relatively long-lived radicactivity.) A

1-line summary of these comments regarding sequential experiments would be

simply to state that one's posterior becomes another's prior.

3. Continuity of Hypotheses; Unprovability

Hypothesis-testing as outlined above was dichotomous =-- that is, we
referred to the null hypothesis (Hp: S=0) and the detection limit hypothesis
(HD: S=Sp) only. In fact, S is a continuous quantity which may take on any
value from zero and some large, reasonable upper limit.! What takes place
when we compare $ with Sc and make the detection decision is to conclude that
one or the other of our two hypotheses (Hpy, Hp) is quite unlikely, or more

correctly that such a result S is quite unlikely (here, £5% chance of

Ta logician might object to this statement on the basis that atoms are
discrete; and such an argument might even seem relevant if we had, say,
100 atoms of a short-lived radionuclide and a perfect (100% efficient)
detector. We could count them all. Even here, however,‘the "S" that
as scientists we're interested in is not the number of atoms in that
particular sample, but its expected value -- such as the long-run
average that would arise from repeated, identical activation analyses.
The underlying issue relates to compound probability distributions; a
treatment for the case of radioactivity is given in Ref. 63.
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occurring) given Hg or Hp. The other hypothesis (Hg if S € Sc, Hp if S > S¢)
is said to be consistent with the observation, but it is by no means proved.
An infinite number of intermediate values of S are also consistent! (The
most likely is S = 8.) This bit of logic may seem trivial and obvious to
some, and subtle and irrelevant to others, but there is one curious and
important consequence. The habit of "accepting™ the hypothesis that is not
rejected, sometimes leadé to biased reporting of data. For example, if S s
Sc, the value reported may be zero; the other extreme 1is reporting it as
being at the detection limit, if S > Sz, A further comment on this matter is
given in the subsection én Reporting of Results (section II.D.4). (See also

note A13.)

4., The Calibration Function and LLD.

Since our concern is with the detection limit for radiocactivity concen-
tration -- i.e., the "lower limit of detection” (LLD) -- we must go beyond
the above exposition on signal detection. If the éalibration functién,
relating response y to concentration x is linear,

y =B+ Ax + ey . (3)
where B.represents the blank; A, the calibration constant or factor; and ey,

the error in the observation y.
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The estimated net signal is
S=-=y-38 (4)
g being an independent estimate for B; and the estimated concentration
is
x = (y - B)/R (5)
ﬁ being an independent estimate for A. (Here, "independent" means
independent of the observation y . Interdependence [correlation] of B and A
always results, of course,;when they are both estimated from the fitting of a
single set of calibraticn dat;.)

Ideally we would next determine oy as a function of «x either.iii
replication, or by error-propagation. Complete replication of the entire
calibration and sample measurement process for the full range of sample
matrixes and interfering activities to yield and adequate number (n) of
_replicates: ii for 1 = 1 to n spanning the full concentration range of
concern (from zero to ~ LLD) would be a very large task. (For the estimated
standard deviation to have a relative uncertainty (95% CI) of +10% for
example would require about n = 200 replicates.at each concentration!) We
favor therefore error propagation, reserving occasional full replication for
control of quality and blunder identification.

Error-propagation is straightforward for linear functions of normally-
distributed random variables. Thus,
vs=vy+vB=o§ ' (6)
where V represents the variance of the subscripted quantity. Since E(y) (the

expected value of y) equals S + B,

Vo = Vs(S=0) = Vg + Vg (7)
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so, if the observations leading to é and y are equivalent, Vo = 2Vg or
‘oo = oBJE'as noted earlier. Calculation of S¢ and Sp follow immediately (T
(assuming still Normality).

With the introduction of a random variable A in the denominator of Eq. 5,
complications set in because we now have a non-linear function (ratio) of
random variables. If ¢ (relative standard deviatioh or RSD of A) is quite
small, the distribution of X is only slightly skew; however, the appropriate
error propagation formula (not shown), which itself is an approximation,
contains the unknown quantity A. The consequence is that both Xc and xp are
themselves uncertain. (Or, if we choose values for xc and xp, the hypothesis
testing errors a and 8 are uncertain.) Full treatment of this matter is.
beyond the scope of this document, but further details méy be found in
Ref. 76.

The approach adopted for LLD purposes, which we label "S-based" is . (:
simpler in concept and straightforward in application. That is, we treat the
detection decision strictly in the signal domain, using S and Sc. The
corresponding signal detection limit Sp is then transformed into the "true"
concentration detection limit xp using the true calibration factor A, which

we do not know. -

xp = SD/p = (21-40o * 21-gop)/A (8)
Using bounds for A; Az 21-v/2%, we can then calculate a confidencé interval
for xp. Taking a conservative viewpoint, we go one step further; namely
Ap = A-zq-y/204 is inserted in the denominator of Eq. (8). The resulting
quantity is an upper limit for xD*for B = 0.05. (A dual interpretation,
which will not be discussed here, defines xp in conjunction with an upper

limit for B. a, of course, remains at 0.05; and neither S¢ nor Sp suffer

from the A-uncertainty, because they are strictly signal-based. When A is E
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not randomly éampled, the uncertainty in Xp no longer represents a "confi-
dence" interval. It must be viewed as a systematic error interval. Finally,
if this conservative estimate (upper limit) for Xp is less than the
prescribed regulatory limit (xR), the objective of RETS will have been met.

Recognizing the distinction between Xg —- the maximum permissible LLD, or
"regulatory limit", and xp == the actual LLD or "concentration detection
lip;t" for a particular sample and measurement technique, and the RETS
requirement:

Xp S xR (9)
it becomes interesting to consider inequélity approaches. 0One such
inequality, forced on us because of the non-linear relation Eq. 5, has
already been useful in conjuncion with Eq. 9. The‘crucial point is that
Eq..9 removes the necessity that xp be known exactly or with a fixed small
relative uncertainty. As long as a reasonably chosen upper limit for xp
satisfies this relation the problem is solved.
A second type of inequality involving Xp, of great practical

importance, derives from upper bounds which can be derived immediately from

the experimental result (§, 0x) which is necessarily produced for every

analysis. The resulting upper bound for x, if X > Xc, can be shown always to

exceed Xp. Therefore, if for a given sample that bound satisfies Egq. 9,
there is no need to re-determine the actual detection limit or to re-design
the experiment. (See the comments on sequential experiments, accompanying
Fig. 3 [section II, C.2], and the note [B4] in Section III for a slightly
extended discussion of the use of inequalities for rapid estimation of bounds

for the detection limit.)
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A purposely controversial, "non-detected" result (ia) has been shown in
F%g. 3, so that we may address the matter of an inadequate MP (xp > xg) for
which a seemingly adequate result (xz-upper limit < xg) has been obtained.
We advise caution. That is, if x5 > xg, the uncertainty associated with any
given measurement is apt to yield rather gradually changing significance
levels (and false negative errors, 8). It is advisable in cases such as
this to estimate directly the probability 8 which would obtain takingvzﬂ_as

the upper limit. That is, assuming normality

XR - i Xp ~ Xy

.. 21— = + 2,95 (10)

Ox ox

If the 90% CI upper limit (x, = X + 1.645 0x) is smaller than xg, then 8 is
necessarily less than 5%. However, as is obvious from Eq 10, the statistical
significance of a given difference (xR-xU) decreases with increasing oy,

which is to say it decreases with increasing LLD (xp). Taking the result in

Fig. 3, X = xa + 1.645 oyy = 0.9 xg (where XD3 = 1.5 xg), we find that

(xg-xy)/ox = 0.219 [assumes oo = ox = const.], so z1-g” = 1.864 or
B = 0.031. This is not so much smaller thaﬁ the base value 8 = 0.05 or, put
differently, the upper limit from a 95% CI would exceed XR. Contrast this
with outcome-1 in Fig. 3, where XDy (and therefore o¢5) is smaller by a factor
of 3. There, if an x,; were 0.9 xR,kz1_B’ would be 1.645 + 3 (0.219) = 2.302,
so B° = 0.01, and a 98% CI would be required for the upper limit to reach xR.3

A final set of precautionary notes regarding the calibration function are
in order:

o} The presumed straight-lim model (Eq. 3) is generally adequate over

a small concentration range ("locally linear"), such as between

3The numerology in this paragraph takes an added impact when one faces
the issue of multiple detection decisions, where still more stringent
requirements are placed on a and B. (See section II.D.4.)
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x = 0 and x = xp. If therebis any doubt, however, such a presumption
should be checked; and, above all, the slope or "calibration
constant" A in the region of the detection limit should not be
derived from remote data (x>>xp) where the curve may exhibit
non-linearity (Ref. 76).

o) Imposed (instrumental, software) thresholds, in place of Sc, will
not only alter o but may change the relevent "local" slope -- unless
the calibration curve is perfectly straight (Ref. T76).

® The calibration factor A, and any of the factors that comprise it --
Y (yield), E (efficiency), V (sample mass or volume), T (counting
time function) -- may show interactions with B (background,
baseline; blank, interference). Such further distortions (of Eq. 3)
are discussed briefly in section III.

0] If non-linear estimation techniques, such as non-linear least
squares, are employed for nuclide identification or for estimation
of calibration curve parameters, values of a and B and the
distribution of x can be perturbed. (Ref. 90).

0 Obvious, but worth stating, is the fact that ¢, (RSD of A) for use

in connection with Eq. (8) is

2 2
¢A=[¢Y+¢E+¢V+¢T] | (11)

provided that all the constituent ¢'s are‘small. (Sampling errors, whicﬁ
could be manifest in the factors Y, E, or V may not always satisfy this
requirement. ¢T, on the other hand, is effectively zero in most counting
situations -- though uncertain (temporal) sampling input functions, or

uncertain half-lives or radionuclide mixes could affect even this quantity.)
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5. Bounds for Systematic Error

It would be marvelous if all our errors were random and of known (
distribution (with known parameters), and even more so if we could rely on
their being Poisson. Such is never the case, so it is inappropriate to apply
the foregoing random-error based hypothesis testing framework for Xp-
calculation, except as an asymptotic component. Wiﬁh carefully controlled
e#perimental work, however, that asymptotic component fortunately can be the
" principal component.

A basis for the treatment of detection decisions and detection limits
in the presence of possible (uncorrected) systematic error is given in Ref.
33 for the case of signal detection. We extend that here to include the case
of "S-based" concentration detection, through the introduction of a second

systematic error bound parameter. Building on Eq. (8) for the random-error-

based concentration detection limit, we get (:
SC = A+ Z‘]—aOO (12)
xp = £(28 + 29-400 + 271-gop)/A (13)

where the quantity in the numerator in parentheses in Eq. (13) is Sp
(incorporating blank systematic error bounds), and E.is a proportionate
amplification factor to provide a conservative bound for possible systematic
error in A. Thus, if A = YEVT (ignoring the 2.22 pCi conversion factor) were
based on a one-time calibration such that random calibration errors became
systematic,

f =1+ 21.Y/2 ¢p (14)
where ¢, is given by Eq. (11). A Eépresents the a bound for possible blank

or interference systematic error. It can be further decomposed into LBB

where Ap denotes the relative systematic error bound in the blank (or

interference) and B denotes the magnitude of this quantity. (See Eq. 4.) e
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If we re-cast Eq. (13) in terms of radioactivity, assuming o5 = op and
taking z1-4 = z7-g = 1.645

f(ziBB + 3.2904)
2.22 (YEVT)

XD = (15)

Here, the numerator is in units of counts, and Xp, in units of pCi per unit
mass or volume.
Following our A-notation for the relative systematic error bound we
obtain from Eq. (14)
f‘=1+AA (16)
Clearly, the best experimental practice would include exhaustive theoretical

and/or experimental studies to obtain reliable values for AB and AA'

That empirical evaluation of such quantities is not trivial is shown in
Fig. 2, where we see that just to detect a Systematic error equal in magni-
tude to the random error of the MP requires more than ten observations (for
standard error reduction).
In lieu of this, and for the sake of providing explicit, reasonable
limits for the A's, we suggest the following [see notes A11 and B3]:
g = 0.05, k= 0.01, by = 0.0
where "Bk" refers té both the blank and background and "I" refers to baseline
or interfering activity effects on B. Systematic error of still another
type, systematic model error is beyond the scope of our discussion though it
is treated briefly in section III. C and in some detail in Ref. 72.
Equations (12) and (15) thus reduce to
Sc = (0.05)B + 1.645 o5 [counts] (17)

3.29 oq
[pCi/g or L] (18)

xp = (0.11)BEA + (0.50)
YEVT

39



‘for the case of Blank (Bk) predominance. If I >> Bk, then the coefficients
of "the first terms in Eq's (17 and 18) become 0.01 and 0.022. B, in Eq. (17)
represents the Blank counts; and BEA, in Eq. (18) is the Blank Equivalent
Activity. As we shall see in subsequeﬁt discussions, this is a very impor~
tant quantity both for the calculation of the systematic error bound (term-1,
Eq. (18)) and for derivation of the random error-based term-2 (through 0p) -
0o iIs the standard deviation of the estimated net signal (counts) when its
true value is zero. Its magnitude depends on the specific counting (measure-
ment) process, and it is the subject of the second following subsection.
Equation (18) is the expression for the LLD (actual [(xp], not
prescribed [xg]). It is valid only when used in conjunction with Eq. (17).
Also, it carries the assumption of normality, and it should therefore be used
only when the "blank experiment" yields B > 70 counts. (See section III for

the treatment of very low-level counting and other special situations.)

D. Special Topics Concerning the LLD and Radiocactivity

1. The Blank, Blank Equivalent Activity (BEA), and Regions of Validity

The ultimate limit of detection for any nuclear or chemical measurement
process is governed by'the systematic and random uncertainty in B. (For B,
read: background, blank, interference, model error bias, etc.) For this
reason BEA should be recognized as an important benchmark in considerations of
detection capabilities. Some useful perspective on the nature and importance
of B-variations is offered in the following three paragraphs (adapted from _
Ref. 38.)

"Unfortunately, there is no alternative to extreme vigilence when

treating the limitations imposed by the blank. 1In the best of circumstances

the mean value of the blank might be expected to be constant and its
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fluctuations ("noise") normally distributed. Given an adequate number of
observations, one could estimate the standard deviation of this noise and
therefore set detection limits and precisions for trace signals. In situa-
tions where the chemical (analyte) blank remains small compared to the
instrumental noise blank this procedure may be valid, as in many low-level
counting experiments. Even hére, however, to assume that the noise is hqr-
mally or Poisson distributed; or to estimate the background from one or two
observations is to invite decéption. As indicated in Table 4, there is a
significant chance (5% for normally-distributed blanks) that the expected
value of the noise (blané standard deviétion) Will exceed the observed dif-
ference between two blanké by a factor of 16! Subtle perturbations arise
even in the instrumental blank situation. For example, if the analyte detec-
tion efficiency changes discretely or even fluctuates, it is quite possible
~ that the instrumental blank will suffer a disproportionate change (77).

Certain speéial cases occur where the blank can be reliably estimated,
and therefore adjusted, indirectly. This is the situation: for "on-line"
coincidence cancellation of the cosmic-ray mu-meson component of the back-
ground in low-level radiocactivity measurement (where there is not even a
stochastic residue from the adjustment process); for the adjustment of the
baseline (due generally to multiple interfering processes) in the fitting of
spectra or chromatograms; and for correction for isonuclidic contamination
(due to interfering nuclear reactions) in high sensitivity nuclear activation
analysis.

When the blank is due to contamination (as opposed to interfefences or
instrumental background), high quality trace analysis is at its greatest
risk. Assumptions of constancy, normality or even randomness are not to be

trusted. An apparent analyte signal may be almost entirely due to
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contamination (78); and blank cérrection must take into account its point(s)
of introduction and subsequent analyte recoveries. The randomness assumption
may be inappropriate because the blank may depend upon the specific history
of the sample, container or reagents (35). Also when procedures are applied
to real sample matrices as opposed to pure solutions blank problems abound,
as was observed, for example, in the analysis of Pb (at‘a concentration of 30
ng/g) in porcine blood in contrast to aqueous solutions (93). (Reference 93
is also commended to the reader for a more complete treatment of the blank in

trace analysis.) The most severe test of this sort comes when "blind" blanks

together with samples at or near the detection limit, all in actual sample

matrices, are submitted for analysis. Horwitz, for example, referring to

collaborative tests of "unknowns" for 2378-TCDD in pure solutions, beef fat,
and human milk, noted that significant numbers of false negatives began to
appear when concentrations were less than 9 x 10”12 (ug/g), and that false

positives increased from 19% for blank "standards" to over 90% for human milk

samples (94)!"

Table 4. The Blank
. Direct .Observation - Crucial for Detection Limit

. Adequate No. of Measurements Needed: With but two, og may be 16 times
the difference

- Efficiency Correction May Differ Between Blank and Analyte (Scales, 1963)
[Ref. 77]

. Yield Corrections Must Recognize Point(s) of Introduction of Blank
(Patterson, 1976) [Ref. 78]

. Multisource Blanks Generate Strange Probability Distributions - Shape
and Parameters Important (Kingston, 1983) [Ref. 95]

. Poisson Hypothesis Must be Tested for Counting Background and Blank
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In relatively controlled environments, especially if B is not an
excessive number of counts, the Poisson assumption (°§ = B) may be reason-
ably valid. The possibility of additional systematic and random error
components should never be dismissed, however; and it is recommended that
both types of non-Poisson B-error be monitored Vvia internal as well as
external quality control procedures. It has already been shown that such
control is not easy -- i.e., in Fig. 2 (and Ref. 38) it was shown that more
than 10 and nearly 50 observations are required just to detect systematic or
additiocnal random error, respectively equal in magnitude to the Poisson

component. The alternative of substituting s2 for the Poisson estimate for
. B .

the assessment Scand xp has some merit; but, for a number of reasons we
recommend using it (sg) rather as a measure of control. [See notes A1l and
A2.] What has been recommended (preéeding section) to cover the possibility
of non-Poisson error is provision of a relative systematic-error bound $B°

In less-controlled environments, rather severe excursions in B and in its
variabillity may take place. If B comes from contamination in sampling and
analysis (reagent), its distribution function =-- which is crucial for
estimating detection limits -- may be derived from both normal (or
approximately constant "offset") and log-normal components (Ref. 95), in
which case‘a large suite of genuine blanks is a prerequisite to xp estima-
tion. In the worst of circumstances B fluctuations may be wild and non-
random. In this case there is no substitute for experienced, "expert
judgment" as to maximum non-significant excursions. (Modern statistical
tools, such as Exploratory Data Analysis (Ref. 96) would make superb

partners for "expert judgment" in these cases.) Formally, this could

correspond to substitution of a site-specific, realistic value of AB' in
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" place of cur suggested default value (0.05). One situation in which such
relatively severe fluctuations might be expected would be continuous
" monitors (count rate meters - analog or digital) for effluent noble gases.
Model error, such zs deviatioﬁé of baselines from single functional
shapes (linear, quadratic, ...) or incorrect components or peak shapes when
~fitting complex multiplets or spectra, constitutes another source of B-error.
Here, the "B" involved actually is interference,vand the problem i{s that high
levels of interfer-ing activities can cause serious.deviations from our
assumed B (e.g., baseline) uncertainties and, hence, estimated detection
’limits. Our default value A1 = 0.01 is idtendeq to provide soée protection. .
Some discussion and illustration of this potentially complex issue is given
in section III and Ref. T72.

Before leaving the topic of the Blahk. let us consider some regions of
validity in relation to 3_types of effécts on the detection limit. Two of
these have been noted already: systematic error (zig LB) and normally?
distributed random error (via o). (See Eq. 15.) The third, of major
concern in extreme low-level counting is Poisson effect, viz. Poisson
deviations from Normality. For "simple counting" (gross signal minus
background) this (Poissqn effect) adds a term z2 = 2.71 to the parenthetical
quantity in the numerator of Eq. 15. (For the lowest level counting, where 3
= 0, £q. 15 muist be replaced with an exact Poisson treatment. (See section
III.C.1.) Taking oq equai to op = VB for the "well-known" blank case, and
AB = 0,05, we can directly compare the three terms which delimit the
detection of net signals (units:couhts):

[sysﬂematic] term-1: 24B = 0.10 B (counts)

[conventionall term-2: 3.29 o5 = 3.29 ¥3  (counts)

[(Poisson] term-3: 22 = 2.71 (counts)
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Two types of question interest us: (1) the cross-over pcints where each term
becomes predominant, and (2) the points (B-magnitudes) by which ﬁhe
unconventional™ terms-1 and -3 are negligible. For question (1), we set
adjacent terms equal and solve for B; for question (2) we define negligibie
as 10% relative. The results:

term-1 < term-2 for B < 1082 counts

term-3 < term-2 for B > 0.68 counts’

Thus, the conventional, approximately Normal Poisson expression (term-2)
predominates for roughly 1 to 1000 background counts observed. (For
interference, substituting A7 = 0.01 for Ag, the upper limit is
increased to about 27,000 counts.

Terms-1 and -3 are not so easily ignored, however. The systematic error
term-1 exceeds 10% of term-2, for B > 10.8 counts; and the extra Poisson
term~3 exceeds 10% of term-2 for B < 67.6 counts. Thus, EqQ's (15) and (18)
were recommended for use when B > 70 counts. (The above regions of validity
apply strictly to the very common simple-counting, well=-known blank case.
Somewhat altered values come about when x is estimated from single or
multicomponent least squares deconvolution.) (See alsc note B9 for a

discussion of the approximation 03 = /Ei)

2. Deduction of Signal Detection Limits for Specific Cbunting Techniques

The concentration detection limit Xp or LLD can be expressed as (see Eq's.

(13) and (15)

-

Xp = const. BEA + const’ - SB/(YEVT) (19)

It is interesting to consider- the exact Poisson treatment in this case.
Using Table 7 in section III.C.1 we calculate a detection limit (Sp) of
5.63 counts, whereas the sum of terms-2 and -3 gives 5.42 counts.
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where the first term relates purely to systematic uncertainty (error bounds)
and both constants include the calibration systematic error factor f. Sg
is the signal detection limit taking into account random error only. Apart
from BEA, the LLD is controlled by the nature of the counting process
(including ;he data reduction algorithm) as reflected in the random error-
controlled %uantity Sg and the calibration factors Y,E,V,T. In this
subsection we shall consider the dependence of the all-important quantity
Sg on the nature of the counting process. The calibration factors will be
discussed in the following subsection on design.

Signal decision (critical) levels and-detection limits were given in Eq's

(1) and (2)

sg = Zi.y 0o = 1.645 o (1)

Sg = Sg * Z9-g op = 1.645 (oo + op) (27)

(A prime has been placed on Eq. (2) because we do not wish to restrict
ourselves to the assumption that oy = op at this point.) The crucial
quantities governing the signal detection limit are thus 0o and op == the
standard deviations of the estimated net signal (§) when its true value is
S = 0 and SA= Sg. These are what we shall relate to the counting system.
What follows is simply a concise summary for different systems of importance.
Derivations and detailed expositions are to be found in section III.C. (Note
that in the remainder of this section, since we shall refer strictly to the
random error component, we shall omit the superscript - zero on S¢c and Sp
-- for ease of presentation. Also, ¢ = B = 0.05, so z = 1.645,)

a) Meaning of oo and op. These quantities are central to the entire
discussion. Let us therefore consider their definitions in terms of the

observations (gross counts) yj and.yp, for "simple counting."
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T e e et ka  ATm m +

Y1 =S+ 3+ e (greoss signal) (20)

yo = bB = e (blank) (21)
(In Eqg 21, one can envisage Y2 as the sum of b - measurements of the bdlank,
SO y»/b equals the average observed blank.)

The estimated net signal is

-~

. 1 |
S =cqyr +ecpy2 = (1yg - <'§>Y2 - (22)

(The coefficients c; are introcduced for later generalization.) Following the

rules of error propagation, and using V=¢<,

5 1)@ :
Vs = L of Uy, =y + Z) V2 (23)
When S = 0, Vy = Vg; and Vp = dbVg. Thus,
. S 1
Vo = Vg + E‘ (bVg) = Vg (1 + gﬁ = VUgn (21)

(Equation (24) defines the coefficient n.)

when § = Sp, Vq = VSD + 3 which may or may not differ from Vg in the most

general case (e.g., non-counting systems, or systems where non-Poisson

variations dominate). Thus, for variance which is relatively independent

of signal amplitude, Vq = const = Vg, so Vp = V5. It follows, in this case -
that

Sc = 1.6U5 o5 = 1.645 og V1 (25)

Sp = S¢ *+ 1.645 op = 2 S¢ (26)

(Thus far we nave said nothing about Poisson counting statistics. That will

follow shortly.)
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First, an important generalizaticn: If we consider a rather more
~ _ complicated measurement scheme (e.g., decay curve and/or Y-spectrum fitting

by linear least squares),

yi = L ajjSj; + By + ey (27)
the solution to Eq. (27) is of the form (see section III.C.3),

Sj = Lcjyivi (227)
or, denoting the component of interest as Sq¢ (or simply S) and the respective
coefficients as cqyj (or simply cj) we write
S§=1Ieciys

just like Eq. (22). Therefore,

Vg = L c? Vi . (237
just like Eq. (23). Knowing the least squares coefficients (e¢j) and the
variances (Vi) of the observations (yj), we can proceed according to exactly
the sample principles developed for "simple counting." (Admittedly, non-
trivial fssues must be dealt with concerning Poisson statistics, identity and
émplitudes of interfering components (Sj for j # 1), and possible semi-
empirical shape functions for fitting the baseline bj. Such complications
will be treated in part below and in part in section III.C.)

In any case, Eq's (25) and (26) are the most important results of this
introductory section. The signal detection limit is seen to be directly
proportional to the standard deviation of the blank, where the constant of
proportionality (for simple counting) is 3.29 /n. The dimensionless quantity
n depends on the relative amount of effort (replicate measurements, counting
time) involved in estimating the mean value of the blank. The bounds for n

are clearly 1 and 2 (taking b>1).
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b) Use of replication (s2) and Student's-t. We have an enormous

‘advantage but a subtle trap as a result of Poisson counting statistics. OB
and op can be estimated directly from the respective number of gross counts.
The trap is that other sources of random error may be operating [Ref. 20].

One solution to this problem is to substitute t,, sg for 1.645 og in Eq.
(23), where t,, is Student's-t (also at the 1-a = 0.95 significance level) for
v-degrees of freedom. (v=b-1 according to the convention of Eq. 21) sp is
the square root of the estimated blank variance, i.e.,

> n (B - B)2
sg = ;: o (28)

where, for our example, n = b.

We strongly recémmend the routine calculation of sp as a control for the

anticipated Poisson value, vB. If non-Poisson Normal, random error

predominates and is well understood and in control, then it is appropriate to
adopt t,sg in place of 1.645 /B. Unless this is assured, blithe application
of tysg could be foolhardy, for Eq. (28) will give a numerical value even if
the blank is non-Normal or not in control. Further, information which can be
deduced using Poisson statistics (e.g., from Eq's (22°) and (237)) is
generally far more general and more precise than what can be derived from a
reasonable number of replicates. [For more on this topic, including the
analogue of Eq. (26) under replication, see notes Al, A2, and B2.]

c) Simple Counting ~- Poisson Statisties. If there are at least several

blank counts expected (B > 5), substitution of the Poisson variances for Vi

and Vp at S = 0 and S = Sp give a valid solutions:
/ [b+1 h
Sc = 1.645 vBn = 1.645 /B - (25°)

Sp =22 + 2S¢ =2.7T1 + 2S¢ (267)
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The constant z2 in Eq. (247) comes directly from Poisson statistics and the

fact that op > oo [Ref. 5]. Thus, it is evident that the detection limit

remains finite even with a zero blank.

d) Multicomponent Counting. When there are two or more mutually

interfering species, oy and op are not so easily expressed. More detail on
these topics will be found in section III.C, but two of the results will be
highlighted here.

For two mutually intefering componenis, where a solution is given by
simultaneous equations or linear least squares, it can be shown that

Sc = 1.645 vBnm  [m>1] (25°7)

Sp = 22 uw+2Sc [wi] (26°7)
where, now, B, n, and u depend on the specific set of equations defining the
observations in relation to the net signal of interest. ("S" and "B" remain
useful and even meaningful labels for the components when there are only
two.) These more general relations show that a universal consequence of
Poisson statistics is the inequality: Sp/S¢c > 2. Equality is approached, .
however, for simple counting when B 2_70 counts.

For multiple interference, a closed (analytic) solution for Sp cannot be
given. One must return to the original defintions, Eq's (1) and (2°), and
tentatively estimate the corresponding o¢'s from the appropriate diagonal
elements of the inverse least-squares (variance-covariance) matrix. (Non-

—tinear-fitting introduces some rather peculiar problems. See section III.)

Fortunately, a limiting calculation for Xp, which derives from non-

negatively (S>0), can be made for any specific result (X, 0x) of multi-

component analysis. Through the use of Inequality Relations (ox 2 0o» etc.)

upper bounds for the critical level and detection limit can be immediatély

derived. (See note B4.)
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A very significant point with respect to these more complicated,

multicomponent cases is algorithm dependence. See section III.) That is

the particular data reduction algorithm (model and channels used for peak and
baseline estimation; assumed number and type of interfering species, etc.)
determines ¢y and op, and therefore the detection limit.

e) Continuous Monitors. Both analog and digital monitors are used for

continuous monitoring in nuclear plants. As noted already in section II.D.1,
one must be cautious in épplying Poisson statistics in uncontrolled
environments, Some basic information on the statistics of such count rate
meters is given, however, in Evans (Ref. 74) and more recent publications
such as Ref. 73. Some of this has been covered also in section III of this
report. Two basic limiting relations, for example, are: |

oR = R/t if t » 1 (29)

0Re = R/27 if t € 1 (30)
" where R refers to count rate, t to the averaging time, and I to the time
constant for an analog circuit. Applications of the relations for long-term
(Eq. 29) and instantaneous (Eq. 30) measurements are treated in section III.
(See also note B7.)

f) Extreme Low-Level Counting. When the expected number of blank counts

for a sample measurement is less than about 5 it is advisable to use the
exact Poisson distribution for making detection decisioﬁé and setting
detection limits. (So long as the constant term z2 is kept in the expression
for simple counting [Eq. 26°], this gives a reasonable approximation even
down to E(yq) = 1. count -- see section III.D.1.) Although treatments have
been given where both gross signal (y1) and blank (y2) observations contain

few if any counts (Ref. 36, 75), we recommend the MP be désigned so that a
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';reaSOnably precise estimate be available for B. The expected nuhber of blank
counts in the 'blank' experiment (yo = bB), for example, should exceed 100,
if possible.

In that case, a simple reduced activity diagram (Fig. 7) can be‘used to
instantly determine Sc and the detection limit (in units of BEA) [Ref. 19].

A complete treatment of this subject is given in section III.C.1.

3. Design and Optimization

We consider briefly the question of experiment (i.e., MP) deéign because
this is the very question one faces when attempting to alter the adjustable
experimental variables in order_to meet RETS requirements. The task is to
bring about the condition,

xp < XR | (9)
Optimization differs from design (in general) in that we adjust the variables
to minimize xp rather than simply to satisfy the inequality,-Eq. (9). Design
and optimization are literally multidimensional operations when one treats a
mul ticomponent system with interfering spectra and/or decay curves and the
possibility of different schemes of multiple time and multiple energy band
observation. It is well beyond the scope of this manual.

For rather simpler systems, however, we can consider design from the -

perspective of Equations 15, 18, and 26°'.

- - £ 2.71 + 3.29-/Rgnt + 0.10 Rpt (35)
D "\2.22 vrv T [1-e~t/T]

. 1 Cqy + Co vRptN . C2[Rgt]
*D (YEV) ( 1-e-t/T (32)

That is,
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Eq. (32) has been cast, of course, to highlight the controllable variables:
Y,E,V and t. (Note that T = 1/) = mean life.) Since the effects of these
variables fall in two categories we shall treat each of the two main factors
in Eg. 32 separately.

a) Proportionate Factors, YEV. Xp decreases directly with each of these

factors, so a requisite proportionate decrease to meet the prescribed LLD
(i.e., xg) can be achieved (in principle) by a corresponding reduction in any
one of them or ia their product.

The factor most readily available is V, for this is a measure of the
sample size taken. In certain situations, it may have reached an upper limit
for various practical reasoﬁs, the most common of which is the size that the
huclear detector can accomodate. If the amount of sample (or disappeafance
through rapid decay) is not limiting, V may be effectively increased further
through concentration and/or radiochemical separation.. If such steps are too
labor intensive, alternative approaches may be preferred. In general,
however, because of its controllability and the inveﬁse proportionality
between xp and V, this quantity provides the greatest leverage.

Y caﬁnot exceed unity. In the absence of sample preparation steps, it is
not even a relevant variable. The most important circumstances arise when Y
1s quite small; major improvements in procedures having poor recovery could
have some impact. -

The detection efficiency E is a complex factor. Changes possibly at our
disposal include geometry, external or self-absorption (or quenching in the
case of liquid scintillation counting), and the selection of nuclear particle

or Y-ray to be measured.
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Some effects are dictated by Nature, however. Most noteworthy is the
decay scheme, especially branching ratios (or Y-abundanoes, ete.). Other
things being equal, the LLD achievable -- i.e., xp -— will vary inversely
with the particle or 7—abundance of the radiation being measured. If
nuclides having low Y-abundances are to achieve the same LLD's as those with

i
high abundances, other factors will have to be accordin%ly adjusted.

Note that the effective detection efficiency may deoend also on the data
reduction algorithm -- e.g., fraction of a Y-spectrum used for radionuclide
estimation. More efficient numerical information—extraction schemes may thus

be beneficial.

b) Background (Blank) Rate; Counting Time. It is clear from the

numerator of the second factor in Eq. 32 that decreasing the background rate-
will decrease LLD up to a point. If t is fixed (say, the maximum feasible)
then once the first (extreme Poisson) term Cy prodominates, further reduction
in the background (or blank or interference) will have little effect. In
contrast if B is so large that the third (systematic-error) term C3B predomi-
nates, then B - reductions will have as large an effect as proportionate
increases in V and E. In section II.D.1, we saw (for typical MP parameter
values) that the B - transition points occurred at about 1 count and 1000
counts. Perhaps the most ioportant opportunity for B-reduction occurs when
it is due to large amounts of interfering nuclides which can be eliminated by
decay or radiochemical separation. \

A second quantity at our disposal is n. This depends on the amount of
time or channels (for a simple peag) used for estimating B for simple

counting. In more complex (multicomponent) situations, the data reduction

algorithm (as embodied in n) will have some effect on xp.



s B el A0 D ST Yoy

The major and most commonly.considered variable is counting time. It -is
interesting here to consider two extreﬁes for the factor in the denominator,
(1-e-t/1), [1 represents the mean life, t1/2/&n2]. If t<t this factor « t.
At the other extreme (t»1) it approaches a constant (one). We can represent

the situation in two dimensions as follows:

Table 5. LLD (xp) Variations with B and t(a)

&t ™
B <1 xp « t7! Xp = const
1 < B < 1000(D) xp « €172 Coxp = t1/2
B > 1000(Db) Xp = const’ Xp « t

a) Units for B are counts. T equals the mean life (tq,/2/in2).
b) For AI = 0.01, the upper crossing point changes from -1000 to ~27000
counts.

Depending on which domain of B and t we are in, it is clear that increases in

counting time may decrease Xxp, have no effect, or at worst increase xp.

Also, it is interesting that in the region of extremely small B, all
increases in t will be beneficial; in fact, the initial variation (if t<t)
will be proportionate. (Admittedly, for fixed Rg, increased t will tend to
move B out of the extreme Poisson region. However, if the expected value of
B is significantly smaller than 1 count, increases in tkcan be of major
advantage if one is measuring long-lived activity.)

When B is already quite large, increase in t can only make matters worse.
The intermediate region is intriguing. Here (15§i1000 counts) "conventional®

counting statistics predominate; and for fixe® Rp, xp decreases with

increased counting time for long-lived activity but reverses itself for
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short-lived activity. Obviously there must be an optimum. Differentiating

i:_"“ ‘the appropriate term in Eq. (32) shows that optimum to be the solution of the (j

transcendental equation.

1
t =<-2'> (1-e~ty/e~t (33)

where t is in units of the mean life 1. The solution to equation (33) gives
the optimum counting time as ~1.8 times the half-life.
&t is worthy of re-statement that (Eq. 32, Table 5):
o] Knowing the time and B-domains, one can quickly scale xp according to
the expected variation with time. )
o Diminishing returns for background reduction set in when the term Cq
begins to dominate.
0 Diminished returns for LLD (xp) reduction by extended counting set in
A once (a) t > 1.8 ty/5 or (b) B > n (z/hg)? which equals 1082 and 27060 (
J counts for the default values taken for blank and baseline relative
systematic error bounds. (This latter statement is equivalent to
indicating ~2% and ~11% of the BEA as minimﬁm achievable bounds for xp.)
(o} A rapid graphical approach for experiment planning, for all 3 B-domains
can be given in the form of the "Reduced Activity Diagram." Space does
not permit an exposition on this topic, but one such diagram (for extreme
low-level counting) is included as Fig. 7. Other diagrams for higher
activity levels and including the effects of non-Poisson error may be

found in Ref's 62 and 80.
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y, Quality

a) Communication. Free and accurate exchange of information is one

crucial link for assuring the quality of an MP and the evaluation of the
consequent data. A few highlights in this area, relevant to LLD and RETS

follow. }
-3
[i] Mixed Nuclide Measurements. Interpretation of non-specific ‘

radionuclide measurements is seldom possible uniess_the average temporal and

detector responses are fixed. Calibrations and measurements of gross nuclide
mixtures require controls on the relative amounts of nuclides havihg
different half-lives and different detector responses for meaningful

interpretation.

[(ii] "Black boxes" and Automatic Data Reduction. One of the dis-
benefits of automated data ;cquisition and evaluation is lack of information
on source code or detailed algorithms employed, specific nuclear parameter
values stored, and artificial thresholds and internal "data massaging"
routines. A number of surprises and blunders could be prevented if there
were adequate open communication in this area. One problem of hidden
algorithms which can be especially troublesome for detection decisions and
limits (as well as for quantification) is intentional (but unknown to the
user) algorithm switching. A potential means Qf control for these kinds of
problems is the use of artificial (known) reference daﬁa sets as distributed -
by the IAEA [Ref 81]. (Further comments on this are given below.)

[iii] Reporting Without Loss of Information. The following paragraphs

and Figures are adapted from [Ref. 38]. -
"Quality data, poorly reported, leads to needless information loss. This
is especially true at the trace level, where results frequently hover about

the limit of detection. In particular, reports of upper limits or "not
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detected" can mask important informaticn, make intercomparison impossible,
and even produce bias in an overall data set. An example is given in Fig. 4 (
which relates to a very difficult radicanalytic problem involving fission
products in seawater {(97). In this example, only six of the fifteen results
could be compared and only eight could be used to calculate a mean. Since
negative estimates were concealed by "ND" and "<", the mean was necessarily
positively biased. (The true value t in this exercise was, in fact, essen-
tially zero; and the use of a robust estimator, the median [m] does give a
consistent estimate.) Although upper limits convey more information than
"ND", authors choose conventions ranging from the (possibly negative)
estimated mean (ﬁ) plus one standard error to some sort of fixed "detection
limit."™ Such differences are manifest when one finds variable upper limits
from one laboratory but constant upper limits from another (98).
The solution to the trace level reporting dilemma is to record all (;

relevant information, including as a minimum: the number of observations

(when pertinent), the estimated value x (even if it is negative!) and its
standard deviation, and meaningful bounds for systematic error. More
thorough treatments of this issue may be found in Eisenhart (99) and Fennel
and West (100)."

When information is not fully preserved for a set of marginally detected
results, distributional information and parameters may be recovered by
statistical techniques (probability plotsi maximum—likelihood estimates)
which have been developed for "censored" data. [Ref. 48,69,82,91]. Ey
"censored" we mean that although numerical results of some of the data may
qot be preserved, the number of such results is recorded. Though such_
techniques permit the partial recovery of information from censored data

sets, they cannot fully compensate for such information loss. éE;:
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Fig. Ya. x//Vv vs degrees of freedom. The curves enclose the 95% confidence
interval for x/v/v. They may be used for assessing the fit of
single or multiple parameter models, and they give a direct
indication of the precision of standard deviation estimates.

Ub. Reporting deficiencies. International comparison of 95zr-95Nb
in sample SW-1-1 of seawater (pCi/kg). The symbols have the
following meanings: <t = true value, ¥ = arithmetic mean

. (positive results), m = median (all results), and b2 = a
"double blunder" - i.e., inconsistent result 77 + 11 was
- originally reported as 24. N and U indicate not detected, and

upper limits, respectively.
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So long as the full initial data are recorded and accessible, however, it
may of course be reasonable to provide summary reports for special purposes
which exclude tabulations of non-significant §'s. But to set them all to
either zero or to LLD guarantees confusion and biased averaging. The
question of automated instrumentation and data reduction may again be

involved here, if the "black box" does the censoring rather than the user.

b) Monitoring (control). Three classes of control are considered

important for reliable detection decisions and measurements in the region of
the LLD. At the internal level it is crueial that blank variability be
monitored by periodic measurements of replicates; similariy, complex fitting
and/or interference (baseline) rbutines need to be regularly monitored by
goodness-of-fit tests and residual analysis. If such tests do not indicate
consistency with PoisSon counting statistics, the simplé substitution of s2
or mutliplication by x2/y in place of the Poisson standard error is not
generally recommended. It could mask assumption or model error unless that
possibility has been carefully ruled out [Ref. 63]. Resulting LLD estimates
could thereby be quite in error.

Reference samples, internal and external, blind and known, are crucial
for maintaining accuracy and exposing unsuspected MP problems. "Blind
splits™ and the EPA Cross-Check samples thus serve a ver} important need.
The utility of external quality control samples is highest, of course, when
such samples resemble "real" samples as closely as possible in their nuclear
and chemical properties, when their true values are known (to the
distributors), and when they are really "blind" from the perspective of the
laboratory wishing to maintain its quality. In connection with the LLD it

might really be valuable to purposely monitor {(internally and/or externally)
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performance at this level -- i.e., to provide blind samples containing blanks
and radionuclides in the neighborhood of the prescribed LLDs.

A third class of control relates to the data evaluation phase of the MP.
The presumption that control is quite‘unnecessary for this step was belied by
the IAEA Y-ray spectrum intercomparison study referred to earlier. A summary
of the structure and outcome of that exercise (adapted from Ref. 38) follows.

"One of the most revealing tests of Y-ray peak evaluation algorithms was

undertaken by the International Atomic Energy Agency (IAEA) in 1977. 1In this
exercise, some 200 participants including this authof were invited to apply
their methods for peak estimation, detecgion and resolution to a simulated
data set constructed by the IAEA. The basis for the data were actual Ge(Li)
Y-ray observations made at high precision. Following this, the
intercomparison organizers systematically altered peak positions and
intensities, added known replicate Poisson random errors, created a set of

marginally detectable peaks, and prepared one spectrum comprising nine

doublets. The advantage was that the "truth was known" (to the IAEA), so the

exercise provided an authentic test of precision and accuracy of the crucial

evaluation step of the CMP.

"Standard, doublet and peak detection spectra (Fig. 5) were provided;
Fig. 6 summarizes the results (81,92). While most participants were able to
produce results for the six replicates of 22 easily deééctable single peaks,
less than half of them provided reliable uncertainty estimates. Two-thirds
.of the participants attacked the problem of doublet resolution, but only 23%
were able to provide a result for the most difficult case. (Accuracy
assessment for the doublet results was not even attempted by the IAEA because

of the unreliability of participants' uncertainty estimates!) Of special
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Fig. 5. TIAEA test spectrum for peak detection
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DATA EVALUATION-IAEA
y-RAY INTERCOMPARISON

[Parr, Houtermans, Schaerf - 1979]

Peaks Participants Observations

22 - Singlets 205/212 uncertainties: 41% (none),
(m =6) -+ 17% (inaccurate) |

9 - Doublets 144/212 most difficult (1:10, 1 ch.)

-49 results

22 -Subliminal  192/212

correctly detected: 2 to 19
peaks

* false positives: 0 to 23 peaks

* best methods: visual (19), 2nd
deriv. (18), cross correl. (17)

Fig. 6. Data evaluation - IAEA Y-ray intercomparison. Column two indicates
the fraction of the participants reporting on the six replicates for
22 single peaks, 9 overlapping peaks, and 22 barely detectable
peaks. Column three summarizes the results, showing (a) the percent
of participants giving inadequate uncertainty estimates, (b) the
number of results for the doublet having a 1:10 peak ratio with a
1 channel separation, and (c) the results of the peak detection
exercise.
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import from the point of view of trace analysis, however, was the outcome for

the peak detection exercise. The results were surprising: of the 22

subliminal peaks, the number correctly'detected %anged from 2 to 19. Most
participants reported at most one Spurious peak, but large numbers of false
positives did occur, ranging up to 23! Considering the modeling and

computational power available today, it was most interesting that the best
peak detection performance was given by the 'trained eye' (viéual method) ."

w

5. Multiple Detection Decisions

It follows obviously that if all radionuclides measured are present
either not at all (Hy) or at the LLD (Hp) and the errors a and 8 are each set
at 5%, then 5% of the detection decisions will be wrong "in the iong run."
Thus, for example, in a Y-ray spectrum containing no radionuclides, if one
were to examine say 200 locations for the possible presence of radionuclides,
10 false poéitives (on the averégé) would result. This carries some curious
implications for any instructions to "report any activit& detected" --
especially if one multipliés the 10 false positives by the number of spectra
examined, for example in a Quarter. (One may find an apparently tighter
cnnstraint in a phrase such as "detected and identified," but this would
require a second manual to struggle with a rigorous meaning for the term
"identified" in such a context!)

If the number of nuclides sought is restricted purely to the "principal
radionuclides,” the situation is altered numerically but not qualitatively.
If there were just one sample per month and 10 nuclides sought in each
sample, we would expect after 1 year (or 12 samples) ~ 6 false positives (if

there were in fact no activity).
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Solutions to this dilemma are either to accept an error rate of 5% false
positive or false negative results, or to redefine the goal such that there
is only a 5% chance of getting a single false positive given the entire set
of measurements. (This seems the only rational alternative when scanning a'
high resolution spectrum for %he unsuspected tiny peaks.) The critical level
must be correspondingly incre%sed and with it, the detection limit. (1f one-
were to assume some prior unequal apportionment of the samples to hypotheses
] Hp and Hp, the increases in Sc¢ and Sp could differ substantially from one
another, but we shall not treat this case.)

To address this matter explicitly, iét us assume that N decisions (ergo,
measurements) are made all at risk-level a°. The probability that none is
incorrect can be given by the Binomial distribution:

Prob (0) = (N) ()0 (1=a")N = (1-a")N (31)
0 .
The probability that no decision is incorrect is by definition 1-a, where a
.is the risk or probability that 1 or more is incorrect. Therefore, tﬁe a’ we
need to impose on each decision is
| @’ =1 - (1-a)1/N = a/N (35)
for small a. If N=100, for example, and o remains 0.05, then
@’ = 1-(0.95)0.01 = 0,000513
If Normality could be assumed so far out on the tail of the distribution,
Zi-g’ = 3.27. Treating 87 in the same way, we would conclude that decision
levels and detection limits would each need to be increased by about a factor
of two (from 1.645).

A soﬁéwhat related issue involving the question of reporting non-

principal rad10u§clides if detected is illustrated by result §b in Fig. 3.

Here an observation brings the decision "detected" and the actual LLD (xp) is

below the prescribed LLD (xg). (Also, as shown, its upper limit as well lies
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below xR.) What follows is that unless there is truly zero activity in a set
of samples examined, that the more.sensitive MP's (lower xp's) will "detect"

more radionuclides even though they may be well below the prescribed LLD (xg)

if any.
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III. PROPOSED APPLICATION TO RADIOLOGICAL EFFLUENT TECHNICAL SPECIFICATIONS
(RETS) !

A. Lower Limit of Detection = Basic Formulation

1. Definition

The LLD is defined, fér purposes of these specifications, as the smallest
concentration of radicactive material in a sample that wil; yield a net
count, above the measurement process (MP) blank, that will be detected with
at least 95% probability with no greater than a 5% Drobability of falsely
concluding that a blank observation represents a "rea;" signal. "Blank" in
this context means (the effects of) everything apart from the signal sought
-- i;g;, background, contamination, and all interfering radionuclides.

For a particular measurement system, which may include radiochemical
separation:

The Lower Limit of Detection is expressed in terms of radioactivity

concentration (pCi per gram or liter [A3]); it refers to the a priori [Al]

detection capability

£(28+[z1-4+21-31%) fSp
LLD = - = xp (1)

2.22 (YEV)T A

The detection decision is based on the observed net signal 3

(a posteriori [A4]) in comparison to the critical level (counts):

Sc = A+ 27-400 N (2)
where the "statistical" part of the definitions (when f = 1, A = 0) sets the
false positive and false negative risks at « and B8, respectively [A5].

Meanings of the symbols follows. (See also App. A).

Tparts A and B of Section III represent proposed substitute RETS pages.
Part A is the more comprehensive, and it is framed in a manner that
should be applicable to most counting situations. Part B is offered as
a simplified version, which will suffice for "simple" gross
signal-minus-background measurements.
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A is the overall calibration factor, transforming counts to pCi/g (or
pCi/L).

. E is the overall counting efficiency, as counts per disintegration;‘it
comprises factors for solid angle, ébsorption and scattering, detector
efficiency, branching ratios and even data reduction algorithm [aA6, AT],

!_is the sample size in units of mass or volume,

2.22 is the number of disintegrations per minute per picocurie [A3],

Y is the fractional radiochemical yield, when appliéable.

0o 1s the Poisson staqdard deviation of the estimated net counts (S) when
the true value of S equals zero (i.e., a blank). (The relation of oo to the
background or baseline depends upon the exact mode of data reduction [see
section III.C.3].)

21-n121-8 = the critical values of the standard normal variate -- taking on
the value 1.645 for 5% risks (one-sided) of false positives (a) and false
negatives (8), wheA single detection decisions are made. (Multiple detection
decisions require inflated values for zi., to prevent significant occurrence of
spurious peaks -- as in high resolution Y-ray spectroscopy.) When o, 8 risks
are equal, and systematic error negligible, phe detection limit for net
counts, Sp, is just twice Sc. (Assumes the Normal Limit for Poisson counts.)
(When subscripts are omitted in the following text z will denote zp g5 =
1.645).

T = the effective counting time, or decay function, to convert counts to
initial counting rate (time "zero": end of sampling) [A9]. It is numeri-
cally equal to (e”At, - e~Aty)/A, where tz and ty are the initial and final
times (of the measurement interval) and A, the decay constant. For At<1,

T+At = tp-ty. [Multicomponent decay curve analysis yields a more complicated
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expression for T -- and generally 00/T, the standard deviation of the
estimated initial rate is given directly.] (T must have units of minutes,
for LLD to be expressed iﬁ pCi.] [A3,A6,A7,A9].

E.andlé are proportionate and additive parameters whiéh represent bounds
for systematic and non-Poisson random error. (The only totally acceptable
dalternative to this is complete replication of the entire measurement process
(including recalibration, e.g., for every sample measured) and making several
replicate measurements éf the blank for each mixture of interfering nuclides
and counting time under consideration [A10].)

f will be set equal to 1.1, ﬁo make éllowance for up to a 10% syétematic
error in the denominator A of Eq. (1) =-~- viz., in the estimate of the
product EVY [A11]. [If there are large random variations in A then fuil
replication should be considered together with the use of x (radiocactivity
concentration) and ox.] Note thatié is equivalent to the slope of the
calibration curve. If the curve deviates frém linearity (e.g., =-- due to
saturation effects, algorithm deficiencies or changes with counting rate,
signal amplitude, etc.) a more complex model and expression for LLD maj be
required.

A will be set equal to 5% of the blank counts plus 1% of the total
interference counts (baseline minus blank) in order to give some protection
against non-Poisson random or systematic error in the (;ssumed) magnitude of
the blank (Ref's 20,72) [A11].

Sp 1s the detection limit expressed in terms of counts.

S¢ (Eq. 2) is the critical number of counts for making the (a posteriori)

Detection Decision, with false positive risk-q.
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LLD (Eq. 1) is the lower limit of detection (radiocactivity

concentration), given the decision criterion of Eq. 2 (and risk-a), where the
false negative risk (failing to detect a real signal) is B, [a prioril]. The

symbol xp is used synonymously with LLD for later algebraic convenience.

Sc is applied to the observed net signal (units are counts) [A12];

whereas LLD refers to the smallest observable (detectable) concentration

(units are disintegrations per unit time per unit volume or mass). LLD is

without meaning unless the decision rule (Sp) is defined and applied [A13].

Bounds for systematic error in the blank (A, counts) and (relative)
systematic error in the proporticnate calibration factor (f) are included to
prevent overly optimistic estimates of Sg or LLD based on extended counting
times. Also, they take into account the possibility of systematic errors
arising from the common practice of assuming simple models for peak baselines
(linear or flat) and repeatedly using average values for.blanks and calibra-
tion factors (Y,E). (Random calibration errors of course become systematic
unless the system is recalibrated for each sample.) Inclusion of A and f in
the equations for Sg and LLD converts the probability statements into

inequalities. That is, a £ 0.05 and B £ 0.05.

2. Tutorial Extensions and Notes

[A1]. Alternative Formulation in Terms of s,. If the measurement

process (including counting time, nature and levels of all interfering
radionuclides, data reduction algorithm) is rigorously defined and under
control, then it would be appropritte io replace zq1-400 in Eq. (2) by tsg,
where t is Student's-t at the selected levels of significance (a«, B) accord-

ing to the number of degrees of freedom (df) accompanying the estimate 302 of

002
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In this case, however, a small complication arises invcalculating LLD,
because Sp (detection limit in terms of counts) is approximately 2too (for
a=R) not 2tsy. A conservative approach would be to use the upper (95%) limit
for oy -- i.e. so/vFL, where F, is the lower (5%) limit for the distriﬁution,
x2/df. The recommended procedure is to use zo, (Poisson) but to test the
validity of the Poissoéon assumbtion through replication. (Ref. 20) [A2].

[A2]. Uncertainty in the Detection Limit. For reasonably well behaved

systems, the critical level (S¢) which tests net signals for statistical
significance can be fairly rigorously defined. (One needs a controlled MP and
reliable functional .and random error models.) The detection limit (radioac-
tivity, trace element concehtration, ...), however, requires knowledge of

additional quantities which can only be estimated -- e.g., standard de?iation

' of the blank, calibration factors, chemical recoveries, etc. Thus, although

Ehere exists a definite detection limit corresponding to the decision
criterion (Sg or a) and the false negative error (B = 0.05), its exact
magnitude may be unknown because of systematic and/or random error in these
additional factors.

Two approaches may be taken to deal with this problem: (a) give an
uncertainty interval for LLD, knowing that its true value (at B = 0.05)
probably lies somewhere within (49) or (b) state the upper limit of the uncer-
tainly interval as LLD, such that the false negative rigk becomes an inequal-
ity -- i.e., B £ 0.05. We prefer the latter procedure, because it provides a
definite and conservative bound. Also, this is in keeping with the spirit of
RETS, which simply requires that the actual LLD (xp) not exceed the

prescribed maximum (xg).
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One very important illustration of this matter arises in connection with
signal detection limits based on replication. If the estimated net signal
(when S$=0) is normally distribufed and sampled n-times (e.g., via paired
comparisons of appropriately selected blank pairs), the critical level is
given by tn-1s//;, where s is the square root of the estimated variance and
th-1 is Student's-t based on n-1 degrees of freedom. The minimum detectable
signal is given by the non-central-t times the true (unknown) standard error.

This is approximately 2t -4 o//n. Bounds for ¢ obtain from the x2 distribu-

tion: (x2/n-1) o5 < s2/02 < (x2/n-1),95. The upper bound for the signal
detection limit (8 £ 0.05) would thus be _
. [2thoys//a] /T(x2/n=1) 051172 (3)

For example, suppose that 10 replicate paired blank measurements were

made, yielding a standard error (s/¥10) for the net signal (Bi-BJ) of 30 cpm.

"Then tg = 1.83 (for a = 0.05) and Rg = tg+SE = 54.9 cpm. Since [x2/9),0511/2
= 0.607,-the upper bound for the detection limit would be higher by a factor
of 2/0.607, or Rp = 181. cpm. (B S 0.05). The total (90% CI) relative
uncertainty for the standard error and hence Rp (g = 0.05) is given by the
ratio of the upper and lower (.95, .05) bounds for /X2, in this case (n = 10)
equivalent to a factor of 2.26. To reduce the uncertainty in Rp to a factor

- of 2.00 (upper limit/lower limit) would require at least 13 replicates for

the estimation of o. [Seé Table 6 and Note B2.]

If, rather than paired replicates, a single sample'measurement is to be

compared with the estimated blank, and the latter is derived through

replication,

~2 2 2 +1
n

Thus, the upper limit for Sp becomes

(2th-1 sg/n1/[(x2/n=1)g.0511/2 = 2sp/nlt(oyL/sp)] (5)
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CA3]. S.I. Units. The preferred (S.I.) unit for radioactivity is the
Becquerel (Bq) which is defined as 1 disintegration/second (s~'). To express
LLD in units of Bq, the conversion factor 2.22 (dpm/pCi) in the denominator
of Eq (1) would be replaced by 1. (dps/Bq) and the factor T would have units

of seconds.

CA4]. A priori (before the fact) and a posteriori (after the fact) refer

to the estimate § or X or decision process as the "fact." LLD is before the
fact in that it does not depend on the.specific (random) outcome of the MP.
Howevér, all parameters of the MP (including interference levels) must be
known or estimated before "a priori" valies for Sg or LLD (xp) can be calcu-
lated. (Such parameters may be estimated from the results of the MP, itself,
or they may be determined from a preliminary or "screening" experiment with
the sample in question.)

[A5]. Poisson Limit. Equations (1) and (2) are valid only in the limit

of large numbers of background or baseline counts. If fewer than ~70 counts

are obtained, special formulations are required to take into account devia-

tions from normality. (See section III.C.1 note B9, and Ref. 19). The

simple sum in Eq (1) == (21-4+z1-g) -- is an approximation; strictly valid
only when u(§) is constant. This is a bad approximation for extreme low-
level counting and for certain other measurement situations involving
artificial thresholds (76).

[A6]. Mixed Nuclides, Gross Counting. For mixed, non-resolved

radionuclides, where "gross" radiation measurements are made, the factors E
and T are meaningful only if the particular mix (relative amounts and
energies or half-lives) is specified. Common agreement on the radionuclides
selected for efficiency calibration for "gross" counting is likewise

mandatory .
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[A7]. For multicomponent spectroscopy and decay curve analysis, the

factors E and/or T are generally subsumed into the icomputer-generated)
expression for oy, where og then has dimensions of disintegrations or
(initial) counting rate or radioactivity (pCi or Bq). Both factors may thus
depend upon the algorithm selected for data reduction -- i.e., the "informa-
tion utilization efficiency" (see section III.C.3).

[(A8]. Formulation of the Basic Equations. The expressions given for LLD

and Sc are perfectly general, with one exception [A5], and intended to avert
many pitfalls associated with errors in assumptions (non-Poisson random
error, model error, systematic‘error, non-Normality from non-linear estima-
tion) which can subvert the more familiar formulation. By formulatihg Eq's
(1) and (2) in terms of oy, we are able to apply them to all facets of
radiocactivity measurement, including the most intricate Y-ray spectrum
deconvolution algorithmé.

Use of z1-400 in place of ty1-43, was a hard choice. I made.it because
LLD (as opposed to Sg) requires knowledge (or assumption) of oy, as was noted
in the discussion on replicate blanks‘[Azj; and Y-spectrum algorithms, for
example, seldom are really applied to replicate baselines! Also, there is
serious danger in s, being estimated at one activity and interference level

(and counting time!) and assumed equivalent [or « 1/v/t] for changes according

to Poisson statistics. The formally simple approach of adding the term A to
Eq (2) limits both misuse and ignorance of a tso formulation. [To my
knowledge, an all-encompassing rigorous solution to the problem (non-Poisson

random and systematic error effects on detection capabilities) does not

exist.]
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(A9]. Time Factor. Obviously, T could be factored into an initial decay
correction and decay during counting: (e~Ata - e=Atp)/x = e~Ata(1 - e=AAl)/),
Explicit expressions will not be given for decay during sampling or for
multistep counting schemes, because they depend upon the exact design (and
input function) for the sampling or counting process.

[A10]. Excess (Non-Poisson) Random Error. In place of a massive

replication study (to replace A + zoo [Eq. 2] by tsy) one could assume a
two-component variance model and fit the non-Poisson parameter for approxi-
mate estimates of detection limit variations with counting time and

interference level (20). This could becéme crucial when B » 1.

{A11]. Systematic Error. A and f have been set at "reasonable™ values

to represent the routine state of the art. These may be subject to more
careful evaluation by the NRC or specific estimation by the licensee. This
is crucial for instruments in uncontrolled environments where these '"rea-
sonable" values may be too small; see footnote, p. 96. Similarly, if demon-
strated smaller bounds of, say, 2% B limits could be substituted for_the
default bound'of 54 B. A most important consequence of including reasonable
bounds for systematic error is that LLD cannot be arbitrarily decreased by
increasing T.

(A12]. Multicomponent Analysis, A - Uncertainties. In cases of

multicomponent decay curve analysis or (a, B, Y) spectrbSCODY. S¢ may be
transformed to ‘a critical level (decision level) for an initial rate or
activity due to spectrum or decay curve shape differences among the compo-

nents. Common factor transformations (Y,E,V) applied, with their uncer-

tainties, to Sg would simply needlessly increase the detection limit. As

75



shown in Eq. (1), such common (calibration) factors and their uncertainties
must, however, be included to calculate the value of the a priori performance
characteristic, LLD.

(A13]. Decisions and Reporting of Data. S¢ (or LLD/2.20) is used for

testing (a posteriori) each experimental result (S) for statistical signifi-
cance. If S > Sc, the decision is "detected;" otherwise, not. Regardless of
the outcome of this process, the experimental result and its estimated uncer-
tainty should be recorded, even if it should be a negative number. (Proper
averaging is otherwise impossible, except with certain techniques devised for
lightly "censored" [but not "truncated"] daté [(Ref. 21, pp 7-16f1.) .The
decision outcome, of course, should be noted and for non-significant results,
the actual detection limit (for those particular samples) should be given. If
desired, a second decision level of significance using 1.9 + Sc, may be | -
noted, in view of the effect; of multiple decisions on a and 8. (See section
II.D.5 on the treatment of multiple detection decisions and the origin of the
coefficient 1.9.) Obviously, changes in Sc (i.e., in z7-4) alter the
detection limit, because of the sum, (29-4 *+ 27-g), in Eq. (1).

(A14]. Variance of the Blank. Estimation of 0,2 by s§ = sfn is

completely valid only if the entire rigorously defined, Measurement Process
can be replicated. This is rarely échievable if there are significant levels
of interference (BI), for By will doubtless be unique for each sample. A
suggested alternative, therefore, Eﬁ_the sg approach is to be applied, is to
estimate séK for the Blank (non-baseline) and to combine this (necessarily as
an approximation) with the Poisson oé from the spectrum fitting. One
caution: X2 is appropriate to estimate bounds for non-Poisson variance (20)

and lack-of-fit (model error), but it should never be used as an arbitrary

correction factor for the Poisson variance (61,63).

76



[A15]. Sp vs xp and Error Propagation. The formulation given here is

based on signal detection (S¢, Sp). Transformation to a concentration

detection limit (xp which is the LLD) involves uncertainties in the estimated
denominator, A. In this report, we do not "propagate" such uncertainties

directly, but rather use them to establish a corresponding uncerta;nty

interval for xp, given Sp. If ¢ (RSD) is small, and ep random, then-

Xp = Sp/A has the same RSD (¢p). If ¢a4 > 0.1, then the uncertainty interval
for Xp can be derived directly from the lower and upper bounds for A, We
take a conservative position, setting LLD equal to the upper bound for xp.
This can be further interpreted as a dualism: {.e., LLD [Eq. 1] is the upper
(95%) limit for xp, and B = 0.05; or, LLD [Eq. 1] is xp, but 8 < 0.05 (upper
95% limit for 8). (Egq. (1), where f = 1,1, takes the relative uncertainty in
A to be +10%.) Sc, of course, is unaffected by ¢p. An alternative treatment
("x-based" rather "S-based") is given Ref. 76, where xp is estimated from
full error propagation, but where one is left with uncertainty intervals for
both a and 3. The best solution clearly is to all but eliminate ¢, but in
any case it should be kept within the bounds giveé by the aefault value of
factor f if at all possible.

[A16]. Calibration Factor (A) Variations, If, for a given measurement

process A actually varies -- e.g., if yields or efficiencies, etc., fluctuate
about their mean values from sample to sample -- then the LLD itself varies. -
If this variation is significant (in a practical sense) and a mean value is

used for A, then xp would best be described by a tolerance interval for the
varying population sampled., Far better, in this case, is the use of direct

or indirect measures for 5_(or its component factors -- Y,E,V) for each

sample; such methods include isotope dilution (for Y) and internal and
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external efficiency calibration (for E). Sampling errors, which can be very (j
large indeed, come under this same topic; but further discussion is beyond

the scope of this report.

B. Proposed Simplified RETS Page for "Simple" Counting1

(See footnote at beginning of section III.)

1. The LLD is Defined for purposes of these specifications, as the smallest

concentration of radicactive material in a sample that will yield a net
count, above system blank, that will be detected with at least 95% probabil-
ity with no greater than a 5% probabilitj of fal;ely concluding ;hat a blank.
observation represents a "real" signal. "Blank" in this contéxt‘means (the
effects of) everything apart from the signal sought --.i;g;, background}

contamination, and all interfering radionuclides.?2

For a particular measurement system, which may include radiochemical (:
separation:
3.29 op/n
LLD = (0.11) BEA + (0.50) (6)
. YEVT

The above equation gives a conservative estimate for LLD (in pCi per unit
mass or volume (V)), including bounds for relative systematic error for the
blank of 5%, for baseline (interference) of 1%, and for the calibration

quantities (Y,E,V) of 10% [B5]. (A 5% blank systematic error bound [hk] was

used above; for baseline error, substitute 47 as indicated under 'BEA'

below.) The "statistical" part -- numerator of the second term is based on

1"Simple", as used here, means that the net signal is estimated from Jjust two
observations (not necessarily of equal times or number of channels). One

observation includes the signal + blank (or interference baseline); the

other being a "pure" blank (or baseline) observation. Also, the "expected"

(average) number of blank counts must exceed -70 counts, for Eq. 6 to be GEF
adequately valid [B9].

2References to notes which follow (in section III.B.2) are indicated in
brackets--e.g., [B5].
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5% false positive and false negative risks and the standard deviation of the
blank or baseline (interference) {o3) in units of counts, for the sample
measurement time At. [See also Eq. {(7), pg. 81.]
Meanings of the other guantities are:

BEA = Blank Zquivalent Activity (pCi/mass or volume). If the baseline

{underneath an isolated Y-ray peak) is large compared to the blank,
substitute "3aseline" for "Blank" in the first term of Zq. (6), and use a
coefficient of 0.0220 in place of 0.11,

M = Radicchemical recovery

)]
t

= Overall Counting efficiency (counts/cisintegration [367)

T = e"AL.11-eTAAML)/), the Meffective" counting time (minutes); where i is'
the decay constant, t; is the time since sampling, and 4t is the lengtﬁ of
the counting interval _For At<<1, T=at> [37, A6, A9]

0oy = VB for Poisson counting statistics (B equals the expected number of
Blank or 3aseline counts). Do not use Eq. (6) unless 3 > 70 counts.

Note that use of the observed number of blank counts, 8 in place of the

unobservable true value B introduces a relative uncertainty (1o) of 6%

(Poisson) in the estimated og, if B > 7C counts [B9].
At

n = 1 + Z2p where At is the measurement time for the sample, and

Aty
Ltp is the measurement time for the background. The dimensionsless factor ga
takes into account possible influences of changes in the calibration factoriﬂ
on the blank -- due to blank interactions/ébrrelations with yield, efficiency
or sample volume (mass). Generally, gp Will- have t;e value, unity (77,78).

The Detection Decision: (a posteriori) is made using as the critical

level LLD/2.20. Unless such a y.iue is used in conjunction with Eq. (6), the

probabilistic meaning (5% false-positive, negative-risks) is non-existent (5)!
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2. Tutorial Extensions and Notes

[B1] Simple Spectroscopy: Eq. (6) may be used with isolated o~ or Y-ray (j

peaks by substituting: (a) baseline height (counts under the selected sample
peak channels) for B in order to calculate BEA and opg; and (b) the expression

i (1 + nq/n2) for n, where ni = number of peak channels taken and np = total

number of channels used to estimate the pure (linear or flat) baseline. (For

t

a linear baseline, ny should be symmetrically distributed about the peak

integration region.)
fB2]. Replication: The variability of the blank should always be tested
by replication, using s2 and x2. (See aso notes A2, élﬂ;) If the
replication-estimated standard deviation significantly exceeds the Poisson
value (v/B), the cause should be determined.1 If excess variability 1is random
and stable the factors 3.29 og in Eq. (6) may be replaced by 2t oy, as
defined in note A2. , ‘ | (:

Some values of t and oyj/s (both at a = 0.05) follow:

Table 6. LLD Estimation by Replication: Student's-t and (o/s) - Bounds
Vs Number of Observations

no. of replicates: 5 10 13 20 120 ®
Student's-t: 2.13 1.83 1.78 1.73 1.66 1.645
o /s 2.37 1.65 1.51 1.37 1.12  1.100

[B3]. Systematic Error Bounds. The presence of systematic error bounds

1imits unrealistic reduction of the LLD through extended counting. The
values (1%, 5% and 10% for blank, baseline and calibration factors, resp.)

are believed reasonable [Ref. 72], but if demonstrated lower bounds are

achieved, they should be accordingly, substituted.

1At least 13 replicates are necessary to "assure" (90% confidence) that S be
within ~50% of the true o. [A2]
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[(B4]. Some Inequalities for Rapid Decision Making and LLD Estimation.

Equation (6) can be written: !

LLD ¥ = xp = 1.1 (2xc) = 1.1 (2[4BEA + 1.645 oxo]) (1)
where Xc, BEA and oxo have dimensions of agtivity per unit mass or volume.
In the absence of systematic error bounds; xp = 2xc, 4*0, and 1.1»1. The
standard deviation of the estimated concentration when its true value is
zero, is oyo which equals vBn /[2.22 (YEVT)] for "simple" counting.

Cne result which is normally available following all radionuclide
measurements is the estimate of the radicactivity concéentration, i, and its
Poisson standard deviation oy. Since oxlz oxo necessarily (the equality
applying only when x=0 -- i.e., a blank),

Xc! = ABEA + 1.645 ox 2 x¢ (8)
and |
xp' = 1.1 (2 x¢') 2 xp (9)
with these two inequalities, using the result which is available with every
experiment (oy), we can instantly calculate quantities for conservative use
for Detection Decisions and for setting a bound for LLD.

Equation (8) should be considered as a new (quite legitimate) decision
threshold, for which a £ 0.05. Similarly, using xq' for detection decisions,
xp' (Eq. 9) may be considered a detection limit for which B8 £ 0.05. (With a

11ttle more work, one could calculate the (8 = 0.05) LLD, which would be

1For convenience of algebraic statement, Xp will be used here to symbolize the
actual LLD. (See App. A.) Also, when units are concentration, "oo" will be
transformed accordingly: 1.e., oxo £ 0o/A, thus, oxo {S oy for x=0.

81 .



smaller -than xp', using x¢'.) If, then, Xp' is less than the prescribed
regulatory value xg for LLD, the requirements will have been met; and actuair
calculation of oy, and LLD using Eq (1), would be unnecessary. Obviously,
this approach cannot be applied completely a priori, in the absence of any
experimental results. Operationally, however, it is straightforward,
conservative, and satisfies the goals of RETS.

Limits for the ratios of xp'/xp, which are necessarily the same for
Xc'/Xc, are readily given for simple counting. If the true value of sample
counts (S) is not zero, then the quantity vBn is replaced with /ET;:;T-where
r = S/B, the ratio of sample to blank counts ("reduced activity" [Ref. 19]).
Thus, for S = B, for example, and n=1 (well-known blank), oy would be
increased by a factor of /i+r = Y2, and this would be reflected in ox. The
ratio xp'/xp would likewise be v2, if there were no systematic error. When
systemé.tic error dominates (ABEA in Eq. 8), then xp'/xp ~1 showing no change.

[B5]. Calibration Factor Variations. If there are large random varia-

tions in Y, E, or V, the full replication of x (radicactivity concentration)
and oy should be considered in place of the f-systematic error bound

approach.

[(B6]. Branching Ratios (or absolute radiation -- a«, B8, Y, eK, ==

fractions) may be shown explicitly by factoring the efficiency. Thus, for
example, E = Ey*gx, where Ey represehts the counting efficiency for a Y-ray
of the energy in question, and gy represents the branching ratio for that
energy Y-ray from radionuclide-k. All else being equal, then LLD = 1/g.

[B7]. Continuous (Monitoring) Observations [See also footnote: p.51].

When a digital count rate meter is employed (Ref. 73), or when a "long"
average estimate with an analog rate meter is made, the standard deviation of

the background rate is unchanged -- i.e., og/T = vRg/At (for At<<1). When an

82



"instantaneous" analog reading is made, however, T+21 (1 = resolving time of

R ,
the circuit), so og/T» 25 [(Ref. 74]. Changes in analog ratemeter
T )
readings are governed by the instrumental time constant, just as they are in
exponential radioactivity growth and decay, by the nuclear time constant.

[(B8]. Decisions and Reporting of Data. S¢ (or LLD/2.20) is used for

testing each experimental (a posteriori) result (S) for statistical signifi-
ance. If § > Sc, the decision is "detected"; otherwise, not. Regardless of
the outcome of this process, the experimental resﬁlt and its estimated uncer-
tainty should be recorded, even if it should be a negative number. (Proper
averaging is otherwise impossible, excep% with certain techniques devised for
lightly "censored" [but not "truncated"] data [Ref. 21, pp 7-16f].) The
decision outcome, of course, should be noted and for non-significant résults,
the actual detection limit (for those particular samples) should be given. If
desired, a second level of significance, using 1.9 x Sc, may be noted, in
view of the effects of multiple decisions on a and B. (See Section II.D.5 on
the treatment of multiple detection decisions.)

[B9]. Counts Required for Adequate Approximation of OB and SpP. When B

is large, the approximations

(i) og =v8  and (II) Sp = 2S¢ = 2z /Bn

become quite acceptable. They are, in fact, asymptotically correct, Jjust as
the Poisson distribution is asymptotically Normal. Regions of validity can
be set by requiring, for example, that each approximate expression deviate no

more than 10% from the correct expression.

For Case (I), where the observed number of counts is used as an estimate

for the Poisson parameter, we require:

0.90 < /& / /T < 1.10
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Taking the upper limit B =B+ Z1-Y /E, we have _ (f
(1.10)2 > 1 + 27.y/B, or B > (21-y/0.21)2 counts
For '10' (z=1), this means B > 22.7 counts; for the '95% CI' (z=1.96), the
limit is 3287.1 counts. A most imporﬁant point is that the B referred to is
A that associated with the Eiégi experiment, because thaf is the sourcé of the
estimate B. Thus, if b = Atg/At equals tHeAratio of counting times ["pure
blank"/(signal + blank)], the RSD of B8 {s given by 1//5—. The requisite
number of counts bB is still (z/0.21)2, but B itself is reduced to
(Z1-y/0.21)2/b s 2_1]. I1f, for example, the blank is measured twice as long
as the sample, the '1o' (z=1) limit for approximation (I) is B > 11.3 counts
(expected).

For Case (II1), we require that,

Sp/2s¢ £ 1.10
that is, (:

(z2 + 2z ¥Bn)/(2z VBn) < 1.10
this reduces to (for zqj-4 = 21-g = 1.645)
B > (52)2/n = (5 + 1.645)2/n = 67.6/n counts
Taking the usual limits for n, we have
B > 67.6 counts (n=1, "Qell—known" blank) .
B > 33.8 counts (n=2, "paired comparison")

Since n = 1 + 1/b, this second approximation (II) is the more stringent.

C. LLD for Specific Types of Counting

1. Extreme Low-Level Counting

When fewer ihan ~70 background or baseline counts (B) are observed, the

nsimple" counting formula for Sp must have added the term z2 = 2.71 (for (E?»
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a=B=0.05) to account for minor deviations of the Poisson distribution from
Normality. [Ref. 5.] (Obviously, this term may be retained for B > 70, but
its contribution is then relatively minor.) ’

When the mean (expected) number of background counts is fewer than about
5, such as may occur in low-level a-counting, further caution is necessary
because of the rather large deviations from Normality. This issue has been
treated in some detail in Ref's 19 and 75. The extreme case occurs, of
course, when B=0 where the asymptotic formula (Sp = 3.29 /B) would give a
detection limtt (counts) of zero, and the intermediate formula, 2.71. 1In
fact, as will be shown below, the true detection limit (a=B=0.05), in the
case of negligible background, %s 3.00 counts. Though the intermediate
formula is not so bad in this case (within -10% for Sp), fhe accuracy for Sc
and Sp fluctuates as B increases from zero to ~5 counts; but above this point
(B=5 counts) the deviations are generally within 10% relative. (Note that
the symbol.B refers to the true or expecﬁed value of the blank; B refers to
an experimental estimate.)

For accurate setting of critical levels (for detection decisions) and
detection limits, when B < 5 counts, we therefore recommend using the exact
Poisson distribution. 1In the following text we shall use the development
given in Ref. 19 and make explicit use of Fig. 1 from that reference -- which
appears here as Fig. 7. Before fully discussing the uée of this figure,
let us make some critical observations: |
o The mean number of background counts is assumed known. Such an assump-

tion is both reasonable and necessary. It is reasonable in that, even

for the lowest level counting arrangements, long-term background measure-

ments should be made yielding, say, at least 100 counts. (An RSD of 10%

is trivial in the present context.) The assumption is more or less
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necessary, in that a rigorous detection limit cannot be stated for the
difference between two estimated Poisson variables, although rigorous (
detection decisions and relative limits can be given. (See references
19, 36, and 75 for further details.)

Fig. 7 gives the detection limits in units of BEA (background equivalent
activity) as a function of B. For relatively small uncertainties in B,
one can deduce limiting values from the curve.

The integers above the curve envelope indicate the critical number of
gross counts (yc = Sc + B). (Though B and S and’y -- i.,e., true or
expected values are real numbers, the critical level for y (yc) as well
as all observed gross counts are necessarily integers.)

The "sawtooth" étructure of the envelope reflects the discrete (digital)
nature of the Poisson distribution. A consequence is ;hat the false
positive risk becomes an inequality =-- i.e., a 5_0.05. At each peak a =
0.05, and then it is gradually decreases until the next integer satisfies; (
the « = 0.05 condition.

The dashed curve represents the locus of the intermediate expression

(Sp = 2.71 + 1.645 V/B).

It is seen that the extreme low-level situation generally applies to the
case whére the Poisson detection limit exceeds the BEA. 1In fact, this
occurs once B is less than ~16 counts. It is recommended that Fig. 7

be used for detection decisions (S¢ + B = integers above the curve
envelope) and estimated detection limits (ordinate = detection limit, in
BEA units). In addition, the figure can be useful for designing (plan-
ning) the measurement process. For example, if the BEA for a particular
nuclide is 1 pCi/L and one wishes to be able to detect 5 pCi/L, it is

clear that the expected number of background counts must be at least (EF
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~1.3. If the background rate is, e.g., 3 counts/hour, this means a 26
min meaéurement is necessary (assuming the mean background‘réte to be
reasonably well known).

A further use for Fig. 7 is the setting of the‘upper limits when y <

yc. That is, the sequence of curves pelow the detection limit envelope,
which have integers less than yg, rep%esent all possible outcomes when
activity is not detected. For examplé, if B (éxbected value) = 1.0
count, yc = 3 (so S¢c = 2.0) and the normalized detection limit is 6.75

« BEA. If an experimental result were y = 1 count, the second curve
below (labeled "1") intersects with B = 1.0 and the ordinate at the (5%)
upper limit of 3.74 - BEA.

Table 7 is offered as an alternative to Fig. 7. Again, the mean
background rate is assumed well-known, and a 5_0.05 while B8 = 0.05. For
the case earlier discussed (B = 1.3 counts), we see that the net critical
number of counts is 1.7 [i.e., 3 - 1.3] where yc is necessarily an integer;
and the detection limit is T7.75 - 1.30 = 6.45 counts, which is indeed

~ 5 « BEA. (Though B = 0.050, for this particular case it can be shown
that a = 0.043.) The intermediate formula would have giveh 1.88 counts
(1.645 /B) for Sc and 6.46 counts for Sp -- results that are fortuitously
close to the correct values. (The fortuitousness becomes clear when .one

calculates Sc and Sp for B = 2.0, for example.)
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o Table 7. Critical Level and Detection Limits for Extreme Low-Level
Counting (Assumes B, known)

N
Background Counts Gross Counts
B - Range Yo = Sc + B yp = Sp + B
(Integer)
0 - 0.051 -0 3.00
0.052 - 0.35 1 4,74
0.36 - 0.81 2 6.30
0.82 - 1.36 3 "T.T5
1.37 - 1.96 y 9.15
1.97 - 2.60 5 10.51
2.61 - 3.28 6 11.84
3.29 - 3.97 7 13.15
3.98 - L4.69 8 14,43
4,70 - 5.42 9 15.71
2. Reductions of the General Equations.
For direct application of Eq's (1) and (2) we take the
following parameter values,
f =1.10 (10% YEV - "calibration" systematic error bound)
Z1-q = 21-g = 1.645 (5% false positive and negative risks)
A=AK+AI=AKBK+$IBI’°-95BK*°-°‘ Br
where: Ag, A represent systematic error bounds (counts) from the blank
and interference (e.g., non-blank compoﬁent of a baseline),
respectively.
AK,I denote relative systematic error bounds of the Blank (counts,
Bk) and of the Interference (Br). 5% and 1% values are taken as
reasonable for routine measurement, but these may be replaced by
laboratory-specific values (A) which have demonstrated validity.
]Note that the Blank and Baseline (non-blank portion) are properly treated
‘ apart (a) because the Blank may contribute directly to a peak (e, Y-ray) due
— - . to contamination by the very nuclide sought, and (b) because of difference
in both the origins of their systematic errors, and their (external)
variability.
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{Symbols without subscripts will denote summation, e.g.,

AB = IAjBj = |[aB]|]. : (:-
Thus, Eq. (1) takes the form, - 7

1.1 (2 8¢)

LLD = - x (10)
2.22 (YEW)T D

(1.1)3.290,
0.11 (BEA)g + 0.022 (BEA)] + —————— (1)
2.22 (YEV)T

LLD

~and
Sc = 0.05 Bg + 0.01 By + 1.645 o4 (12)
where: BEA = Blank (or Interference) Equivalent Activity
i.e., BEA = B/[2.22 (YEV)T] = B/A (13)
From the above equations it is clear also that the critical level,

expressed in the same units as LLD, is just LLD/2.2. Use of this is equiva-

lent to applying Sc to test net counts for significance; and the form of data (:
output available may make it (LLD/2.2) more convenient to use than S¢. In the

absence of systematic calibration error, of course, this equals LLD/Z2.

3. Derivation and Application of Expressions for o, -— The Poisson Standard
Deviation of the Estimated Net Signal, Under the Null Hypothesis [Blank]'

A. "Simple" counting (gross signal minus blank)

i)  Derivation
.When two (sets of) observations (yq,yp) are made, one of the sample and
one of the pure Blank (or Interference), we have

yy =S+ B + eq (counts) [observed] (14)

1In the following text, A L, and B will be used without subscripts, in order

to simplify the presentation. The context will indicate whether the Blank

(Bg) or interference (By) predominates. As noted elsewhere, if the number

of background (or interference) counts exceeds ~70, the normal approximation (EF
of (Poisson statistics) is adequate, and the relative uncertainty in

estimating oy (or og) will be less than 6%.
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yo = bB + ep (counts) [observed] (15)
(where eq, e are error terms)

Then, S = Y1 = yo/b
2 2 1\2 2 1\2 *(16)
o] = 0 + — o) =Yy + hd y
s b Y2 ! b 2 .

*¥ The approximation (to be used throughout this section) involves taking y
(or B), rather than the expected value E(y) (or B), to estimate the Poisson
variance [B9]. i

For the null hypothesis (S = 0),

i.e. 0o = op/n = vBn, where =n = (1 + 1/b)
The critical level S¢ thus equals
S¢ = Z1-q 0o = 1.645 VEn (17)

The detection limit (counts) is defined from the basic relation,
Sp = SC *+ 21-80D = Z1-g00 * 21-0D = Z1-g0o * 21-g Y002 + Sp (18)
Taking a = B8, this leads to,

Sp = 22 + 2205 = 25¢ (19)

Since for a = B = 0.05, z2 = (1.645)2 = 2,71,

Sp = 2.71 + 3.29 vBn (counts) _ (20)

The first term is not completely negligible if B is émall. For approxi-
mate normality, B > 9 counts (Ref. 19); but to make the first term above
(2.71) negligible -- i.e., less than 10% of Sp, we require at least 67
counts, since n 2 1. [Below B = 5 to 10 counts, the "extreme Poisson"
techniques for detection limits, discussed in Ref. 19 and section III.C.1,

should be employed; and for 5 < B < 70 counts the full equation above should

be used (See also Ref. 36.).]
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ii) Two Special Cases

[1] Gross Signal - blank

[RANDOM PART]
If the sample is measured for fime t1, yielding yq counts; and the blank

for time tp, yielding ¥y counts, then

, 1 ti1+t2
b =2tytyand n=1+=—= :

b to

B = yo/b
and é =yl - y2/b=y7 -y (tT/tg)
(Note that if tpy > ty, then the limits for n are obviously, 1 and 2.)

This is to be compared with the critical number of counts Sg,

L t1ttee
S¢c = 1.645 oo where o5 = vBn = vB -

2

If S < S¢, we conclude ND; otherwise D
Sp = 2.71 + 3.29 oq | (21)
and,
xp = LLD = 2Sp/[(YEVT)(2.22)] , (22)

or, using Eq. (11) directly [last term divided by 1.1]

. ti+to
t2

- (2.22)(YEVT) 2.22(YEVT)

XD

where the first approximation comes from dropping the term 2.71 in the
numerator, and the second approximation comes from using B for the unobser-
vable true value [B9]. (Both approximations are adequate so long as B.g 70

counts, and tp > tq.)
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If t1 is small compared to the half-life, then T=ty (called At, earlier)
Since B = Rp + t1, og and Sc scale as tq1/2, and xp « t71/2. (For fixed
to/ty or for to » t1.) |

When decay during counting is not negligible then xp decreases less
rapidly with increasing tq; and eventually (ty>>tq,/2) T assumes the form
e’xta/a which is independent of At (i.e. tq), so xp asymptotically increases
as t11/2. Obviously, there is an optimum (minimﬁm LLD or xp). [See section

I1.D.3 on Design.]

[+SYSTEMATIC PART]

Eq's (11) and (12) include terms for systematic error bounds for B (viz,

ABg and AB1), where for the Blank (all that's being considered here), the

relative error h is taken as 0.05.

Sg = 0.05 Bg + 1.645 o (23)

t1+t2

= 0.05 B + 1.645 /B ( ) [counts]

to
and

(1 .1 )(3.29)00

xp = 0.11 (BEA)y + (24)
b K 2.22(YEVT)
| Af Brte2) -
0.11 B + 3.62 [B
to
- 2.22(YEVT)

Since the first term in the numerator varies more rapidly with B than the

second, the systematic error bound will predominate above a certain number of

Blank counts;
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(X) 3.62\ L1+t
Beq. = n =1082.n = 1082 | ~=~——] counts (25)
0.1 : to

Again, for long-lived radionuclides, (tq << tq,2), T = tq, and since B =

Rgn
Xp = |0.11 Rg + 3.62 ""t_-" {2.22(YEV) (26)
) 1

The asymptotic constant value for Xp is determined therefore by the Blank

RBt‘] ’

rate, as indicated in the first term.
For t1 >> ty/2, T » e"Ata/) = constant; so, from equation (24)

Xp = const (Rgtq) + const'\/RBt1 (27)

thus, xp asymptotically increases with ty.

As stated elsewhere, the use of systematic error bounds converts the

statistical risks into inequalities: o £ 0.05, B8 £ 0.05.

(REPLICATION]

Let us suppose that 11-observations were made of the Blank; all for the

same time, t;. (Otherwise, the simple replication model is invalid.) Then,

following the common estimation procedure,

0 ' ) z(§i-B)2
S=yy~B, where B = I By/n, sp = op? =
] n-1
and
SE(B) = s/vi1 (28)

5 T [yy + spnl1/2
Now, in place of zop, we use tsg, SO zog * t sB/ﬁT where now n = (n+1)/n
because tp has been replaced with ? t1 = netq.
In the absence of systematic error, the critical number of counts is

given by
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Sc = t1-q,v S V1 (29)
where ty y = t 05,n-1 is Student's-t at the 5% significance level with n-1

degrees of freedom (v),

2t1-q,v*0B/M 2t1-a,v’58/ﬁ7'F1-a,v

= < (30)
T e S 2.22 (YEVT) 3

The inequality gives an upper limit for Xp, taking into account the
uncertainty of o through the use of the x2. (F1-a,v,w is equal to y2/y for
v-degrees of freedom at the ath percentage point.)1

An alternative treatment, wherein a non-Poisson (or "extraneous")

variance component is estimated and combined with the Poisson estimate, VB,

is described in Ref. 20.

[REPORTING]

Recommendations.for reporting the results following the above testsi the
estimate x = §/(2.22 YEVT), the estimated bound for systematic error
[rA(BEA)], and the standard error og/(2.22 YEVT), should all be recorded
regardless of the outcome of the detection test for significance (whether § >
Sc or not). This is vital both for unbiased averaging, and for the possibil-
ity of future tests at different levels of significance or with different
estimates of systematic error. For "ND" results, the corresponding estimate
of xp should be provided. For the sake of uniform repé;ting practice and to
avoid straining the distributional aséﬁmptions (Poisson = Normal) one

standard deviation (not a multiple thereof) should be reported.

TBecause of the large uncertainty interval for s/o¢ unless v is very large,
the use of an upper limit for Xp is preferred to the simple substitution of
s for op in the previous equation. [A2]
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[CONTINUOUS MEASUREMENT ] i

A long-term (tq »>>1) measurement with an analog count-rate meter or a (
digital count rate meter measurement follow essentially the same statistics
as above. .

For an "instantaneous" measurement with an analog meter, however, the '
uncertainty in the rate is given by i

o = YR/(27)

where 1t is the RC time constant.

The product og /n/T in Eq (1B) is therefore replaced by /ﬁg;}é'lta, where
now n = (l_ + 1) =1/(21) (assuming t» >> 1 and t1/2 >> 1). For an

2T to
"instantaneous" observation of a sample, we correspondingly find:

Rgross~RB Rgross BB (32)
R W s I} = ————— - wac—
net = = -ita Rnet 21 ts

e~ Ata

The corresponding radiocactivity concentrations are found by dividing the . (:

respective R's by (2.22)(YEV); and the factors 1.645 and 3.29 are used,

respectively, to calculate critical levels and detection limits (LI..D)..I ’

A further complication with rate meters is the equilibration time (RC for

analog instruments) which must be taken into consideration (7U4).

IThe reader should be alerted to the fact that an instrument in a relatively
uncontrolled environment, such as a count rate meter, may be subject to
rather significant non-Poisson "background" variations. Therefore, it is
urgent that the X2 test for background reproducibility be carried out, and
if non-Poisson random variability is implied, s2 should be used in place of
the Poisson variance estimate. (See the earlier section on the use of
Student's-t with replication procedures.)

Worse still, such fluctuations may be non-Normal or even non-random in
character. 1In this case a system-specific estimate should be made for the

relative uncertainty bounds -- i.e., AB. (One should not simply adopt the (E?
"reasonable" value of 5%, suggested for controlled environment [well-
shielded] counting systems.)
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[INSTRUMENTAL THRESHOLD]

On occasion, when there is "sensitivity to sbare" a fixed, possibly
arbitrary threshold (K) will be set in place of S;. The minimum detectable
number of counts is then given by:

Sp =K+ z /Sp + 002 (33)

This equation has the approximate solution,

2 1/2
Sp = K + 22 + z [K + og + 22/2] (3%a)

or, if K >> 002 = Bn,
Sp = K + 1.645 vX (34p)
For such a solution, a<<0.05, but B = 0.05. Also, since K is a fixedi
number (like 103 counts, or in x-units 30 pCi/g for example), Sp is no longer
" much influenced by the statistical uncertainty in B. 0On the other hand, the

detection limit is increased by an amounﬁ K or more.

[2] Simple Spectroscopy

[linear or flat baseline]

If a baseline underlying a spectral peak (a-,Y-) is estimated from a
region well removed from that peak, then the'decision and detection equations
are formally identical to those présented above. One simply substitutes (for
ty and t5) ny and ny, the respective number of channels used for estimating
the peak and the baseline. The only other difference is that the full

expression for A —- (AK + A7) -- must be used, when one includes bounds for

systematic error.

[CRANDOM PART]

If two equivalent, pure baseline regions lie symmetrically about the

peak, as shown in Fig. 8, each having ns/2 channels, then
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y1 =X y3 =8 + I B+ e
ni i

yo=1L y; =% B;j + e, where
ng nz

Sy = %' Si equals the number of net sample counts in the peak region.

Under the assumption of linearity foriBi (baseline counts in channel-i),
y1=S1+n1§+e1LS1+B1+e1 (35)

Yo =np B + ep = (n2/n-,) By + eo (36)

Thus,
S1 =y1 - y2 (ny/np)

Vs, = ¥1 + (n1/np)2y;
npye

062 = By +| — (noB)
np

nq\2 /no
1+ =) | =81} = Bin (37)
nz m .

ny nq +np
14— 2 —_—

nz n2

(]
w

where n

Thus, the formulation is identical to the preceding one for gross signal

minus blank, except that nj's replace the ti's.

[+SYSTEMATIC PART] E .-

The formal structure again is unchanged. However, since we now tfeat
baseline error bounds rather than blank systematic error bounds, A ; 0.01
rather than 0.05. (ng common, limiting case when one has baseline interfer-
ence is assumed here: that Bk << Br, so A = 0.01 By, with Br = baseline in

region-1 (peak). This quantity is estimated as y2(n1/n2),
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Thus,

Sc = 0.01 B + 1.645 oq

= 0.01 By + 1.645 vB1n (237)
and,
Xp = 0.022 (BEA)T + (257)
" 2.22(YEVT)
0.022 By + 3.62 /B1 1
2.22(YEVT)
where n = (nq + n2)/no N

The point at which the systematic baseline error term dominates the

expression for xp is,

. 3.62
ed —{0.022

2
) n = (2.70 x 10%¥)n counts (257)

B. Mutual Interference (2 components)

i) Zero degrees of freedom - 2 observations

In both the evaluation of decay curves and simple sﬁectroscopy, one often
encounters the situation where there is "mutual interference" -- il.e., where
radiations from two components contribute to each of the observations taken,
or to each of the two classes of observations. If the relative contributions
differ, the two components may be resolvable (depending upon statisties).
[For the following discussion, refer tovFig. 9 for simple decay curve

resolution, and Fig. 10 for simple spectrum peak analysis.]

-
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Here the signal dominates in region-1 (time or energy) and the blank, in

region-2.
Thus,
y1 = I Yi =857+ B +e (38)
nq
y2 =T yi =2a$5y *DbB+ez (39)
nz

For the decay curve, the_parameters a and b are uniquely determined by
the t1,5's (or A's) of the 2 components, the spacing (time) of the two
observations, and the measurement intervals tq and t2.1. (If A2 = 0, then
the 2nd component is equivalent to a blénk and/or long-lived interfering -
nuclide.] For the spectrum peak, nq and np represent the respective numbers
of channels as before; and the np's are symmetrically placed about the peak
region (symmetric with respect to the mid-n1-channel) for a baseline model
which is linear or flat. The same formalism applies also for the case of two
overlapping spectra (provided the blank is negligible or corrected), such as
Y-ray doublets. (It should not be ovetlooked that, for the Y-peak, the
effective detection efficiency [E] here depends upon the algorithm -- i.e.,
the 1ocationé, widths and separations of fegiops -1 and =-2.)

Simply to solve these equations, we must assume that a and b - i.e., the,
decay curve or spectrum shapes -- are known. Wﬁen B (component-2) is a
linear baseline or a constant blank or interference (éécay curve), b is
dictated by the model, then a < b, and

decay curve: b = tp/t

spectrum: b = ny/nq

1Thus, 3_(and b, if A3 £ 0) subsumes the parameter T in Eq. (11) [Good
approximation if ty, is set at the midpoint of the first interval (tq) 1.
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[RANDOM PART]

The solutions (Poisson statistics part) follow:

5 [oyi-y2 . 2 b \¢ 1 \2 " (40)
= — and o x fe——1] yq + y
! b-a S1 b-a ! b-a 2

and, replacing S1 by zero,

2 b \2 1 \2 _
0g ={—}]B1 + |—} bBy1 = Byn (41)
b-a b-a

b(b+1)
(b-a)2

where n =

[When a » 0, as in "simple counting", Qe get the previous result, that n »
(b+1)/b]
As before;-
Sc = 21-q0g = 1.645 VBin (17")
However, the minimum detectable Sy - counts takes the form,
Sp = 22u + 2S¢ = (2.71) u + 3.29 /BfR  (207)
b2+a
where P o= ———— ]
(b-a)?
Some generalizations follow: -
(a) If a=b, both S¢ and Sp diverge (Sp more rapidly)
(b) The term zzu which comes about because of Poisson counting statistics
has greater influence than the term z2 which we find in "simple counting".
(c) In fact the previous approximation Sp = 2S¢ is poorer, especially
when a approaches ER

Sp/S¢ = 2 + « (2/VB)

(b2+a) /vo{b+1Y
) (b-a)

where K = w/vn
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Asymptotic forms for «:
© when b » 1 and b » a (e.g., np » nq, or t> » ty or for barely
5 ,
overlapping peaks), ¥« * = (——) = 1 [also, pand n = 1]

b-a (1+a)/vy 2

® when b = 1 (e.g., for blank or linear baseline), k =+ (-2
-a

For the first asymptote, Sp = 2S¢ (within 10%) when B > 68 counts, as
before ("simple" counting). For the second asymptote, x ranges from 01707
[a=0] to = [a=1].' Taking for example, a=1/2 [k = 2.12], we find that Sp =
2S¢ once B > 304 counts. Thus, the extra Poisson term (z2u) cannot be so
readily ignored as in the case of "simple" counting.

Once again, xp = SD/@.ZZ (YEVTX]where T will already have been included
in the coefficients a and b for the decay curve example, and E will be
influenced by the normalization of the coefficients for the spectrum peak
example. (Here, E=Ey, the totai efficiency corresponding to the fraction of
the peak contained in region-1.)

That is, for the decay-curve mutual interference example, Xxp =
RB/[(YEV)(Z.ZZ)] because Rg (initial counting rate of the 'signal'

radionuclide) depends on the equations including T:

(o] (o]
Y1 = Rg Tg1 + Rg Tgy + eq (42)
o] (o]
y2 = Rg Tg2 + Rg Tpp + e ~ (43)
where
At [ 1 - e-AiAti
Tjy =e” 3% | ———— )
Aj
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[SYSTEMATIC PART]

Let us next consider bounds for systematic error in B. At this point, a
new problem presents itself: 'should we assume that the relative uncertainty
AB applies to By in yq, or to Bp = bB, in yp, or both? In fact, the
question as posed is inappbopriate. The systematic error in fitting is due
to model or shape error (in the baseline) rather than a discrete shift from a
signal-free blank observation as in "simple counting."

In order to simply present the systematic (shape) error contribution to

xp, it will be convenient first to change the normalization basis from

region—-1 to the entire portion of the spectrum or decay curve involved in the:

fitting. We accomplish this by re-writing Eq's (38) and (39) to read,

Y =aj; S+ by B+ eq (u45)

Yo =ap S+ bp B+ ep (46)
where the a's and the b's are normalized to unity (fa=1, Ib=1)., Thus S and B
represent the contributions of the net signal and blank to the total peak
area that we analyze (S + B = yq + y2).

The solution is formally identical to that obtained before,

S=ciy1*e2y2 (47)
2 2 2 : )
0o = ¢1 (byB) + cp (boB) = Bn (48)
where now'
¢y = by/D, c2 = -b1/D, D = (aibp - apbq) (49)
and
2
n=2=5Lcy by (50)
The relation,
= + 2 E + 2
Sp = 2S¢ + z°u = 2z 0g + 2y (51)
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where

2
u=1=Icyaj (52)

is still valid, and it can be shown that ¢ = c*/a,, 0o = 00721,

and u = y*/ay where the asterisk refers to the previous normalization (where

%1, by » 1). It follows that

Sp sB Sp
X = = = = X
(2.22 YVT)E (2.22 YVT)Eaq (2.22 YVT)E*

%

Thus, the (Poisson part of) the detection limit does not depend on the a,
b normalization.
With this re-normalization it becomes straightforward to treat systematic

error. Substituting Ay; for yi in Eq. (47) we obtain

-~

Ag = cq1 Ayt +-cp Ay2 (53)
If the Ay;'s are due to systematic shape errors in the baseline, we have
Ag = ©1B Aby + CpB Aby = B I ¢y Aby (54)
where the Abj's are the deviations of the aétual baseline shape from the
assumed shape and B represents the baseline area (counts) Qﬁder the fitted
region. .Thus the quantity I c; Abj replaces the hg which occurred in the
expression for "simple counting" systematic error, so exactly the same
equation may be used for calculating the detection limit. (Because of

orthogonality between the {cj} and the true baseline {bj}, A can be also
calculated directly from the alternative baseline-shape b{[
b = I oy b] | (55)
A significant change in concept has entered, however, in that the Abg
represent systematic baseline shape alternatives rather than simply a
baseline level shift., (Thus, the Abj's represent generally a smooth

transition in function -- as from a linear to a quadratic baseline, etec.)
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The formalism developed here can be extended quite directly to the
estimation of systematic model error even for multicomponent least squares

fitting of spectra and decay curves. Some of the basic theory and details

have been developed in Ref. 72 ("bias matrix").

(ii) Finite Degrees of Freedom - Least Squares

For just two components (as baseline and spectral peak, etc.) it is’
relatively simple to extend the above considerations to many observations
such as one finds with multichannel spectrum analysis or multiobservation
decay curve analysis. (This is because it is frivial to write down the
expression for the inversion of the 2 x 2 "normal-equations" matrix.) fhe

same basic matrix formulation applies, however, for any number of componénts.

[1] General WLS Formulation

In this case (P > 2, n > P), the observations (counts) y; can be written:

"y ] [ 21 ] [ by ] et T

y2 az b2 e

. = 3 . S + 3 ' B + 3 (56)
bynJ L 8n . L bp | en

or, in matrix notation,

y=Mg +e (57
where |
a; by
M = : : and 8T = (é B)
an b

The weighted least-squares (WLS) solution to Eq. (57) is,

S =8p = [T w)™? MT wyl4 : (58)
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and

Vg = (MT w W7 (59)

where the weights w are,

Wi = 1/vyi = 1/(M8)y = 1/y% (60)

where the second equality applies for Poisson statistics. (If the

observations are independent, w is a diagonal matrix -- i.e., wij = 0 for
1 #43.)
Defining,
eg = [MT wM)™1 MT wlqy (61)

we can alternately express V§ by means of error propagation, that is,

§=8; =Iciyit (587)

- 2 2 i

Vg =ZcyVy =1Icg (ag S+ by B) (597)
Yy

Thus, for the case of Poisson counting statistics,
V§=Su+Bn (62)

where

2 2
wZELecyag n I cq by

Beyond this, the development is identical to that given above for zero

degrees of freedom (P=n). Thus,

S¢c = z0p where oo = ¥ Bn (63)
Sp = 2S¢ + 22 u (64)
A5 =Bh =B Icg by (65)

where b{ is an alternative baseline shape, used for estimating possible

systematic error.
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The development thus far has been perfectly general; that is, neither the

number of components (P) nor the number of observations have been restricted.

Components other than the one of interest (S = 81) have, however, been

coalesced to form a composite interference or baseline, B.

[2] Explicit Solution for P=2

If we treat the baseline (or any other single component) as a "pure"
second component, having fixed shape, then the explicit solution for §, Vg

and the cj may easily be stated. The results follow from the inversion of

the 2 x 2 matrix

£y Iyp\~! I - I12
(MT WM)-1 = = Det. (66)
Z12 I2 ~I12 I
where
2 .
Det = (Iq Ip - I92)
and

Iy =L wal Ip = I wb? £1p = I wab
Taking the null case (S = 0), the weights equal,
wij = 1/(Bby) (67)

using the above expression for wjj and the previous definition for cy,
together with the explicit expression for the matrix M and its inverse, it
can be shown that,

ey = [ag/by - NI/(2 a?/bi - 1] (68)
All other quantities of interest == y, n, o5, Sg, Sp and 4 (given b”) —-
follow directly as indicated above. (A reminder: we have normalized all
"spectrum" components for the foregoing derivations. That is,

Zaj = Ibj = 1.)
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Equation (68) yields specific solutions once the peak (aj) and baseline
(bj) shapes are given. For a flat baseline (by = 1/n), for exémple, Eq (68)
reduces to

2
ci =(ay - 1/n] 7 [zay - 1/n] (69)

It follows that

2 1 2 '
Ng = Icj <">= 1/ [Xai - 1/n] (70)
n

Gaussian Peak

If the peak shape (ai) is symmetric,. then 34j and cj are even functions,
which means that if alternative Ej.are odd (and share the same center of
symmetry) then the systematic, baseline-model error vanishes.

A = I ¢y b{ = even vector « odd vector = 0
This suggests that for a symmetric isolated beak, one can treat the baseline
as flat--even though it may be linear or otherwise odd (about the peak
center) -- without introducing bias. |

Passing beyond just the assumption of symmetry, and specifying the peak
to be gaussian, we can calculate explicit values for the Cj once n is known.

It is interesting to examine this case as a function of channel density
(number of channels per FWHM or per £3 standard deviations, (SD), etc.). The

results of such a calculation are illustrated below. -



Channel Density u=1c¢cy ay n=1=%c¢y by =I ci/n
n = ch/peak
peak £ £ 3 SD

3 2.80 1.83
6 2.03 1.60
® 1.92y 1.44y

The above values for y and n may be used to estimate the several
gquantities of interest for the detection of én isolated peak. Note that 1if
the observations are extended well beyond the peak (beyoﬁd #3 SD), u and n
can be reduced substantially. The limiting values (n = =) become 1.16 aﬁd

0.591, respectively.

[3] Some Final Comments

The immediately preceding discussion was'givén from the perspective of
Y-ray (or a-particle) spectra. The same formalism would follow (Qﬁ to the
specification of a gaussian or symmetric peak) for detection in decay curve
analysis, or B-spectrum analysis, etc.

Except for the general matrix formulation and treatment as-composite
interference (baseline), the full multicomponent decay or spectrum anélysis

detectidn issue will not be treated here. Further discussion would require

explicit assumed models (interfering radionuclides); but the basic principles

and basic equations would be unchanged.
Regarding this more complicated situation, however, three procedural

comments, and three notes of caution may be given:
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[PROCEDURAL COMMENTS]:

©

peak searching efficiency ana detection power depend on the exact
nature of the algorithm employed. For the IAEA test spectrum for peak
detection, for example, at least six independent principles @ere used
by 212 participants to detect peaks in the Same digitized, synthetic
Y-ray spectrum [Fig. 6 and Ref. 81]. Yet, false positives ranged from
0 to 23 peaks, and false negatives ranged from 3 to 20 peaks. (The
number of actual peaks in the spectrum was 22.)

Eq. (64) is approximate only because of changing statistical weights as
S increases from zero %o Sp. An exact solution may be obtained by

iteration (Ref. 61).

Systematic model error for the mutlicomponent situation may be derived .

with the use of a "Bias Matrix," which can be derived from the least
squares solution for §, --- together with alternative models (Ref.

72).

[CAUTIONS]:

©

Searches for multiple components often lead to multiple detection
decisions. The overall probability of a false positive (a) in
searching a single spectrum can thusAbe substantialiy more than the
single-decision risk. (See Ref. 53 and Section II.D.5 fof more on
this topic.)

If non-linear searches (involving, for example, estimation of half-
lives and/or Y-energies as well as amplitudes) are made, the estimated
signal distribution (§) is no longer normal. Again, substantial

deviations from presumed values of_g may be the result (Ref. 90).
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® Bad models and experimental blunders may inflate X2 because of poor
fit. Multiplication of Poisson standard errors by mis-fit y/Y/df will
yield misleading random error estimates, and erode detection

capability. (See note [A14] and Ref. 63.)
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R Appendix A. Notation and Terminology

Response “ : ‘
E(y) =B+ AXx =B + S y =B+ Ax + ey = E(y) + ey [observation]
y = B+ Ax ' [estimate]
X = (y‘- B)/A

E(y) = response or gross signal (counts), true Sr "expeéted" value [yi denotes
the ith sample or time period-or energy bin, etc] |
y = observed ("sampled") value of y, characterized by an error ey
8 = random error
0 = standard deviation (SD); o/v/n = SD of the mean (standard error, SE);
RSD = relative standard deviatioﬂ
A = systematic error {(bound)
rd
- ¢ = relative-g (RSD)
| A = relative-A
§ = statistically estimated value for y (e.g., weighted mean, ...)
(similarly for §, B, A, x)
§ = assumed br "scientifically"-estiméted value for y
S = true net signal (counts) ["expected value"]
B = true background or blank or baseline (counts) (BK = blank; By = )
interference counts) |
BEA = Background Equivalent Activity = B/A
X = true radioactivity concentration, per unit mass or volume [pCi or Bqg/g
or L]. To be referred to in the text simply as "concentration"
A = generalized calibration factor; for simple counting, witr z in 2Ci/ (g
. or L), A = 2.22 (YEVT), where

Y = (radio)chemical yield or recovery
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E = detection efficiency (overall, including branching ratio)
V = volume or mass of sample V :(T
T = appropriate time factor or function (minutes)

Vg, Vx, etc = variance of the subscripted quantity

03, 0x, etc = SD of the subscripted quantity = /V |

oo = SD of § (at S=0) [counts]; oxo = SD of X (at x=0) [concentration]

n = a multiplier which converts og to 0g5: 0g = op/n. 1Its value depends
on the design of the Measurement Process. |

b = ratio of counting times (or channels) blaﬁk/(signal + blank); then
n=1+1/b

Sg, X¢ = critical or decision levels for judging whether radiocactivity is
present, with false positive risk-a

Sps, Xp = corresponding detection limits, with false negative risk -8

Z1-q» 21-g = percentiles of the standardized Normal distribution, equal to (:
1.645 for a, B = 0.05

LLD = Lower Limit of Detection (for radioactiyity concentration) = Xp

XR = prescribed rggulatory LLD -- i.e., limiting value which licensee is
supposed to meet. This is in contrast to the actual LLD (xD) which
ts achieved under specific experimental circumstances. (Thus,
generally, xp < xg)

v or df = degrees of freedom

Appendix B. Guide to Tutorial Extensions and Notes

Section III.A and III.B were prepared as proposed substitute RETS pages
-= the former cast as a more or less comprehensive statement, and the
latter, for "simple" gross signal-minus-blank counting. A-series and

B-series notes, respectively, were appended to these sections, so that each GEF
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could be to a large extent self-contained. The following guide (or index) to.
these notes is given because of their possible general utility, and because
the two sets of notes are not only redundant (as intended) but also

complementary.

1. Basic Issues

a) Use of S.I. uﬁits - Note A3

b) General formulation - Note A8

Eq. (1) was developed for application to most counting situations,
through gge introduction of parameters éo, f and A which can be evaluated for
the specific counting method and data reduction algorithm in use. The
equation must be modified, howgver, when small numbers of counts are
involved. Normal variate percentiles (21-a- z1_B) are included as parameters
which may be modified as appropriate (e.g., multiple detection(decisions).

e¢) A priori Vs a posteriori - Note Al

Measurement process characteristics ‘must be known in advance before an "a
priori" detection limit can be specified -- may call for a preliminary
experiment.

d) Decisions and reporting - Notes A13, B8 (identical)

The critical level (SC) may need to be increased in the case of multiple

detection decisions; LLD then automatically increases. Non-detected and

negative results should be recorded; related topics; averéging, truncation.

2. LLD Formulation -- Conventional (Poisson) Counting Statistics

a) Rapid det -tion decisions, LLD bounds via inequalities - Note B4
b) Extension of the simplified expression (Eq. 6) to isolated spectrum

peaks. - Note B1
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c)
d)

e)

A9, B6

Continuous monitors - Note B7
Mixed nuclides, "gross" radiocactivity - Note A6

Factors for detection efficiency (E), counting time (T). - Notes A7,

Branching ratios, spectrum shapes, decay curves and sampling designs all

affect LLD beyond just the matter of counting statistics. Interpretation of

Eq. (1) (mixing of factors oo, E, T) varies accordingly.

3. Non Poisson (P) - Normal (N) Errors

a)

Extreme low-level counting (P # N); limits of validity.for

approximate expressions - Notes A5, B9

b)

Replication, lack of fit, use and misuse of s2, y2 -~ Notes A1, A2,

A8, A10, A14, B2

c)

Uncertainty in and variability of the LLD. Blank variations;

multiplicative parameters: Y,E,V - Notes A2, A12, A15, A16, BS

d)

Systematic error bounds - Notes A8, A11, B3

Additive and multiplicative components; default values; limiting effect

on LLD reduction.
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Appendix C.1

DETECTION CAPABILITIES OF CHEMICAL AND RADIOCHEMICAL MEASUREMENT SYSTEMS:

A Survey of the Literature (1923-1982+)

L. A. Currie
Center for Analytical Chemistry
National Bureau of Standards
Washington, DC 20234

Introduction

The twin issues of the detection capability of a Chemical Measurement
Process (CMP) and the detection decision regarding the outcome of a specific
measurement are fundamental in the practice of Nuclear and Analytiéal Chem-
istry, yet the literature on the topic is extremely diverse, and common
understanding has yet to be achieved. Besides their importance to the
fundamentals of chemical and radiochemical measurement these issues have
great practical importance in application, ranging from the detection of
impurities in industrial materials, to the detection of chemical signals of
pathological conditions in humans, to the detection of hazardous chemical and
radiocactive species in the enviromment. It is in connection with this last
area, as related to the regulation of nuclear effluents and environmental
radicactive contamination, and at the request of the Nuclear Regulatory
Commission (NRC), that this report has been prepared. Highlights from our

extensive search of the literature are given in the following text.

Scope of the Survey - -

The focus of the literature survey was directed toward two points: (1)
basic principles, terminology and formulations relating to detection in

Analytical Chemistry; and (2) basic, but more detailed or specialized studies
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relating to detection limits in the measurement of radionuclides, as well as

important practical applications in this area. The search was conducted with
the aid of five computer data bases, complemented by the examination of major
reviews and books treating mathema&Zical and statistical aspects of Analytical
Chemisﬁry.

Carefully constructed patterns of keywords led to a total of 1711 titles
(1964-1982) which were scanned. From these, 700 were identified as important
to our purpcse, so abstracts were copied and studied. A final catalog of 387
articles from the computer literature search was prepared, and from this
about 100 were marked as having special relevance. Discovering so extensive
a literature on so esoteric a topic was somewhat surprising; also surprising,
or at'least noteworthy, is the fact that a very'large fraction of the work on
this topic has originated in foreign institutions with major contributions

coming from Western and Eastern Europe, the Soviet Union, and Japan.

Basic References and Key Issues

For the purposes of this appendix~report our discussion of the literature
must be highly selective; thus only a few of the most critical séurces are
discussed. We have given primary emphasis to the "aréhived" literature (e.g.,
journal articles as opposed to repopts); and more general publications
treating mathematics, statistics, radioactivity measurement, and quality
assurance have been cited only if detection limits were given major focus. A
slightly expanded, classified bibliography appears in appendix C.2.d.‘

The key issues which were addressed or cited in the literature inéluded,
as noted above, terminology and formulation (definitions) resulting from
exposition of the basic principles of statistical estimation and hypothesis

testing in chemical analysis. Special (but basic) topiecs treated by several
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authors included: the effects of counting statisties, non-counting and
non-normal random errors, random and systematic variations in the blank,
reporting and averaging practices, multiple detection decisions, Bayesian
'approaches, the influence of the number of degrees of freedom, interlabora-
tory errors, control and stability, optimization of detection limits,
interference effects, data truncation, and decisions Vs detection Vs determi-
nation vs identification limits. Major topies which related specifically to
radicactivity measurements included the influence of alternative (y-, B-)
spectrum deconvolution techniques, comparison/selection of alternative
instruments and radiochemical schemes of analysis (especially in the area of
activation analysis), the treatment of very low-level activity and the
treatment of very short-lived radionuclides. Titles in the highly selected
bibliography reflect a number of these specific issues.
To conclude this summary report, I should like to cite just a few
sources which I believe either set forth or review some of the more basic
issues. The groundwork (within the present ﬁime framg) was laid by Kaiser
(2), who adopted the basic statistical principles of hypothesis testing (and
type-I, type-11 errors) to detection in spectrographic analysis. Other
frequently-cited works from the 60's are papers by St. John, McCarthy and
Winefordner (3), Altshuler and Pasternack (4), and Currie (5), the latter two
treating the question of radiocactivity. Later important works which specif-
ically treat radiocactivity detection are given in references (6) - (21).
(Further comments candot be given in this brief report; see the titles for
the focus of each papé;.)
Finally, some of the most useful expositions and summaries of LLD

treatments and principles and unsolved problems may be found in the books and

reviews beginning with reference (22). Special attention should be directed
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to the IUPAC statement (22,23), the papers by Wilson (34), the chapter by Currie
(33), the review by Boumans (26), and the books by Winefordner (30), Kateman (j

and Pijpers (29), and Massart, Dijkstra and Kaufman (28).
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Appendix D. Numerical Examples1

1. Isolated Y-Ray Peak

Consider a Ce(Li) measurement of an isolated Y-ray, in which a 500 mL -
H>0 sample is counted for 200 min, and for which the deﬁection efficiency
(cpm-peak/dpm) is 2% absolute. Let us assume that the expected blank rate
for the peak region is 2.0 cpm, and that equal number% of channels are used
to estimate the baseline as are used to estimate thelgross peak counts. This
makes the net peak area estimation calculation exactly equivalent to the
"simple" gross-signal-minus-background measurement, with equal counting times.
Referring to Figure 8 and Eq's (35)-(37), we see that ny = ny (here 6 channels

)

each), so n = 2 and og = op/2.

a) Simplest Case

Ignoring possible systematic error components, the calculations are as
follows:

Y =1, E = 0.02, V=20.51L, T = 200 min

Rg = 2.0 cpm, B = RRT = U400 counts

Sc = 1.645 o = 1.645 og /m = 1.645 /(500)(2) = 46.5 counts
Thus, if the ngt peak exceeded 46.5 counts one would conclude that a signal
had been detected. (Obviously any observed net signal must be an integer,
though Sc itself can be a real number.) The detection limit (in counts) is

Sp = 2.71 + 2S¢ = 95.8 counts

The concentration detection limit xp is

Sp 95.8
LLD = xp = = - = 21.6 (pCi/L)
2.22(YEVT) (2.22)(1)(0.02)(0.5)(200)
Ta11 equation numbers refer to Section III of this report, except for .

example 1g which refers to Section II.
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If the mandated LLD [xR] were a typical 30 pCi/L, the experimental

"sensitivity" would be considered adequate.

b) Interference

The above calculation was "pure a priori." Let us suppose, however,
that the actual sample being measured exhibited a Compton baseline of 30 cpm
over the peak region (6 channels). Everything then becomes scaled by a
factor of /30/2 (vecause oy = vB). Thus,

B = RgT = 6000 counts
Sc = 1.645 /Bn = 1.645 (109.5) = 180.2 counts
2.71 + 28  363.1

Xp = = = 81.1 pCi/L
2.22(YEVT) 4.4y

This exceeds the hypothetical mandated value (30 pCi/L), so we next face the

issue of Design -- i.e., change of the Measurement Process, to attain the

desired limit.

For long-lived activity in the absence of non-Poisson error, S¢ and Xp
both decrease as (YEV)~! and as vB/T = /Rg/T. A lowered LLD (xp) could be
achieved therefore by (1) decreasing the blank rate or increasing the
counting time by a factor of (81.8/30)2 = 7.43, or, (2) increasing the
product (YEV) by (81.8/30) = 2.73. For the present example, neither Y nor Rp
may be altered (unless radiochemical sepération could be applied to remove
the interfering activity); and we shall assume that E is fixed.—-Increase of
the effective volume (possibly via concentration) would probably be the most
efficient procedure, but, failing that, the counting time might be extended

to 1487 min (~ 1 day).
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¢) 3lank Variability (s3)

To illustrate another point, let us assume that a series of 20 replicate
blanks (200 min each) were obtained for which $3 = 105 counts, to be compared
Wwith the baseline Poisson estimate above,

o3 = vB = /3000 = 77.4 counts

2 2
Thus, sp/og = {105/77.4)2 = 1.84, wnich exceeds the 95 percentile of the y2/df

distribution {(just slightly - see Fig. YA). We might conclude that this is
die to bad luck (chance), or that there is non-random structure a?sociated
with the series of bdlanks, or that there is actually additional {(non=-Poisson)
variability. For this last assumed case, we could use tég/ﬁ_and 2t oyLv/n for
Sc and Sp (bound), resp. (see eguations 3-5, and note B2). That is
Sc = tsz/m = 1.73(105)¥2 = 256.9 counts
Sy = 25¢ (oyp/s) = 2(256.9)(1.37) = 703;9 counts

and i

Xn = Sp/{2.22 YEVT) = 158.5 pCi/L
[The factor oyL/s may be found in Table 6 aécompanying note B2.] Thus, the
critical level is inflated by roughly 40%, compared to the earlier (Poisson)
estimate [SC(Poisson) = 180.2 counts]; and the Detéction Limit is nearly

doubled. (Note that Sp and xp are both upper limits.)

d) Rapid Estimation of LLD, Using Inequality Relations’

Following Eq's (8) and (9) in note BY, we can set a limit for LLD
directly from an experimehtal result =-- for example, from a weighted least
squares (WLS) spectrum deconvolution. Continuing the same example, let us
suppose that the result from WLS fitting was

X + oy = 95.6 + 32.2 pCi/L
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Ignoring systematic error for the moment, we would take Bx_z 0x0.
Therefore,
Xc” = 1.645 ox = 53.0 pCi/L > xC
Xp” = 2x¢” = 106 pCi/L > xp
The result X would thus be Judged significant (detected), and 106 pCi/L

could be taken as an upper limit for LLD.

e) Calibration and Systematic Blank Error

Continuing with the same example, with interference: B = 6000 counts,
; =200 min, n =2, Y =1, E = 0.02, and V-= 0.5 L, we can use Eq. (6) for a
direct estimate of xp.
3.29 opvn

LLD = xp = (0.0220) BEA + (0.50) ——

(0.11 has been replaced with 0.0220 because we are treating a baseline rather

than a blank for the purpose of this illustration.) The baseline equivalent

activity is Rp/(2.22 YEV), or 30 cpm/0.0222 = 1351. pCi/L. Thus, the LLD,

taking a 1limit of 1% for baseline systematic error (e.g. —— deviation from
the assumed shape) and 10% for possible relative error in (YEV), we obtain

(3.29)Y(6000) (2)
(1)(0.02)(0.5)(200)

LLD = (0.0220)(1351.) + (0.50) (

LLD = 29.7 + 90.1
Thus, the Poisson part (90.1/f = 90.1/1.1 = 81.9 pCi/L) is increased by 10%
to account for uncertainty in the multiplicative factors, plus a very

significant 33% (29.7/90.1) to account for possible B uncertainty =-- using
AI = 0,01.
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f) Limits for LLD Reduction

A finite half-life (such as the 8.05 days for 1'31I) and the systematic
error bounds (f, A1) both limit the amount of LLD reduction that can be
accomplished through increased counting time. 1In the above example (xﬁ =
81.9 pCi/L for t = 200 min), taking t;,» = 8.05 d and 41 = 0.01, £ = 1.10,
it can be shown that with the optimum counting interval (1.8 x t1/2, or - 2
weeks), the Poisson component of LLD is reduced only to 13.9 pCi/L, and the
added contribution from the systematic erfor bound (AI) in the baseline
then equals 47.3 pCi/L. (Setting f + 1.1 gives a further increase of 10%.)
Thus, for this example, increasing the counting time by about a factor of 100

results in an overall LLD reduction of only -~ 25%!

g) Multiple Detection Decisions

If we wished to compensate forvthe number of nuclides sought but not
found in a multicomponent spectrum search, we should increase Sc (and
therefore neéessarily LLD) from the above values. For example, if just 10
specific peaks were sought in a given spectrum, and we wished to maintain an
overall 5% risk of a (single) false positive, we could employ Eq. 2-35 to
calculate the needed adjustﬁent in o and zq-4. That would be:

@’ =1 - (1-0.05)0-1 = 0.0051,
21-q° is thus 2.57. 1If we were to similarly decrease the false negative risk
(B), both Sc and Sp (and therefore LLD) would be increased by the same factor
2.57/1.645 = 1.56. The resulting xp for the peak under discussion would be,

Xp *+ 1.56 (81.9) = 128 pCi/L
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2. Simple Beta Counting

Consider the measurement of 9OSr, where Rg = 0.50 cpm, ¥ = 0.85, E = ] (T
0.40, and t = 1000 min. (V is irrelevant for this example.) We must
consider decay during counting for the 64 hr (t1/2; 90y actually measured;
and we shall take g = 0.05, and f = 1.10 as before.

The LLD is given by Eq. (6):

3.29 ogv/n
YEVT

LLD = (0.11) BEA + (0.50)

For this example we shall assume a very long averaged background (& n = 1),
BEA = (Rpt)/(2.22 YEVT), and T = (1-e~At)/A = 915 min. Thus, YEVT =

(0.85)(0.40)(1)(915) = 311 min, and

500 (3.29)v500
LLD = (0.11) |=————] + (0.50)
(2.22)(311) 311
= 0.080 + 0.118 = 0.198 pCi, " (:

where the systematic error bounds in the blank and multiplicative factors (5%
and 10%, resp.) account for ~46% of the total. That is, with f + 1 and
4 >0, LLD = 3.29 v500/[(2.22)(311)] = 0.106 pCi. The corresponding decision

point xc is xp/(2f) or 0.198/2.20 = 0.090 pCi.

3. Low-Level a-Counting

Assume that a Measurement Process for 239pu had the following
characteristies.
Rg = 0.01 cpm, E = 0.30, Y= 0.80, t = 1 hr
Referring to Table 7, and taking B = 0.60 counts, we find Yc = 2 counts and
Yp = 6.30 counts. That is, if in a 60 min Observation more than 2 counts

(gross) were observed, the 239py would be considered "detected". The LLD is

given by : e
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(yp - B) (6.30 - 0.60)

R XN = = = 0,18 pCi
Va DT % 22(yEvT) 2.22(0.80)(0.30)(60)
;-.* If Rg were known to only 10% (i.e., based on 100 counts observed), we

could set limits: B = 0.60 + 0.06 counts, so yc and yp remain unchanged, but

6.30 - (0.60 + 0.06)
Xp = = 0.178 + 0.0019
2.22(0.80)(0.30)(60)

The conservative (upper) limit for Xp thus equals 0.18, pCi.

The above estimates could, of course, have been obtained using Fig. 7A.

139



FORM )
f\fzf ©OAm 335 U.S. NUCLEAR REGULATORY COMMISSION |- REPORT NUMBER (Assignea by DOC)

BIBLIOGRAPHIC DATA SHEET NUREG/CR-4007

4. TITLE AND SUBTITLE (Ada Vo/um'e No., /fapprop.narel . .
Lower Limit of Detection: Definition and Elaboration of
a Proposed Position for Radiological Effluent and Environ-

2. [Leave blank)

3. RECIPIENT'S ACCESSION NO.
-t mental Measurements

7. AUTHORIS) 5. DATE REPORT COMPLETED

. : ONTH YE AR
L. A. Currie ugust 1984
9. PERFORMING ORGANIZATION NAME AND MAILING ADDRESS {inciude Zip Cooe) DATE REPORT ISSUED
. : MONTH ] YEAR
National Bureau of Standards September 1984

Washington, D.C. } 20234

6. fLeave blank)

v

8. (Leave blank)

12. SPONSORING ORGANIZATION NAME AND MAILING ADDRESS (/nclude Zip Code)

10. PROJECT/TASK/WORK UNIT NO.

Division of Systems Integration

Office of Nuclear Reactor Regulation 11 FINNO.

U.S. Nuclear Regulatory Commission

Washington, D. C. 20555 - B-8615
13. TYPE OF REPORT PERIOD COVERED (Inclusive dates)
Technical June 1982 - August 1984
15. SUPPLEMENTARY NOTES 14. (Leave olank)

16. ABSTRACT (200 words or less)

A manual is.provided to define and illustrate a proposed use of the Lower Limit of

Detection (LLD) for Radiological Effluent and Environmental Measurements. The

- manual contains a review of information regarding LLD practices gained from site
visits; a review of the literature and a summary of basic principles underlying

the concept of detection in Nuclear and Analytical Chemistry; a detailed presen-

tation of the application of LLD principles to a range of problem categories

(simple counting to multinuclide spectroscopy), including derivations, equations,

and numerical examples; and a brief examination of related issues such as refer-

ence samples, numerical quality control, and instrumental limitations. An appendix

contains a summary of notation and terminology, a bibliography, and worked-out
examples. :

17. KEY WORDS AND DOCUMENT ANALYSIS 17a. DESCRIPTORS

Lower Limit of Detection, LLD, Effluent Measurement, Environmental Measurement,
Radiological Monitoring, RETS.

17b. IDENTIFIERS'OPEN-ENDED TERMS

19 SECURITY GLASS (This report) |21 NO OF PAGES
18. AVAILABILITY STATEMENT aEnCu‘RaSS'lﬁed
.. c ’ ) 22 PRICE
Untimited 2°fﬁmﬁ%gﬁﬁ$¥§é””“’” :

~ NRC FORM 335 (181



